BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16339906)

  • 1. Optical detection of rate-determining ion-modulated conformational changes of the ether-à-go-go K+ channel voltage sensor.
    Bannister JP; Chanda B; Bezanilla F; Papazian DM
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18718-23. PubMed ID: 16339906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of ion binding site from ether-a-go-go to Shaker: Mg2+ binds to resting state to modulate channel opening.
    Lin MC; Abramson J; Papazian DM
    J Gen Physiol; 2010 May; 135(5):415-31. PubMed ID: 20385745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular Mg(2+) modulates slow gating transitions and the opening of Drosophila ether-à-Go-Go potassium channels.
    Tang CY; Bezanilla F; Papazian DM
    J Gen Physiol; 2000 Mar; 115(3):319-38. PubMed ID: 10694260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mg(2+) modulates voltage-dependent activation in ether-à-go-go potassium channels by binding between transmembrane segments S2 and S3.
    Silverman WR; Tang CY; Mock AF; Huh KB; Papazian DM
    J Gen Physiol; 2000 Nov; 116(5):663-78. PubMed ID: 11055995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between ion binding to eag and HERG voltage sensors contribute to differential regulation of activation and deactivation gating.
    Lin MC; Papazian DM
    Channels (Austin); 2007; 1(6):429-37. PubMed ID: 18690045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divalent cations slow activation of EAG family K+ channels through direct binding to S4.
    Zhang X; Bursulaya B; Lee CC; Chen B; Pivaroff K; Jegla T
    Biophys J; 2009 Jul; 97(1):110-20. PubMed ID: 19580749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel.
    Schönherr R; Mannuzzu LM; Isacoff EY; Heinemann SH
    Neuron; 2002 Aug; 35(5):935-49. PubMed ID: 12372287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding site in eag voltage sensor accommodates a variety of ions and is accessible in closed channel.
    Silverman WR; Bannister JP; Papazian DM
    Biophys J; 2004 Nov; 87(5):3110-21. PubMed ID: 15347589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of action for a human ether-a-go-go-related gene 1 potassium channel activator.
    Perry M; Sachse FB; Sanguinetti MC
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13827-32. PubMed ID: 17693551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a'-go-go-related gene (hERG) K+ channel.
    Ferrer T; Rupp J; Piper DR; Tristani-Firouzi M
    J Biol Chem; 2006 May; 281(18):12858-64. PubMed ID: 16524878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence of gating charge movement and pore gating in HERG activation and deactivation pathways.
    Goodchild SJ; Macdonald LC; Fedida D
    Biophys J; 2015 Mar; 108(6):1435-1447. PubMed ID: 25809256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular Mg2+ regulates activation of rat eag potassium channel.
    Terlau H; Ludwig J; Steffan R; Pongs O; Stühmer W; Heinemann SH
    Pflugers Arch; 1996 Jun; 432(2):301-12. PubMed ID: 8662307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence-tracking of activation gating in human ERG channels reveals rapid S4 movement and slow pore opening.
    Es-Salah-Lamoureux Z; Fougere R; Xiong PY; Robertson GA; Fedida D
    PLoS One; 2010 May; 5(5):e10876. PubMed ID: 20526358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and slow voltage sensor rearrangements during activation gating in Kv1.2 channels detected using tetramethylrhodamine fluorescence.
    Horne AJ; Peters CJ; Claydon TW; Fedida D
    J Gen Physiol; 2010 Jul; 136(1):83-99. PubMed ID: 20584892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations within the S4-S5 linker alter voltage sensor constraints in hERG K+ channels.
    Van Slyke AC; Rezazadeh S; Snopkowski M; Shi P; Allard CR; Claydon TW
    Biophys J; 2010 Nov; 99(9):2841-52. PubMed ID: 21044581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of voltage independence from a rat olfactory channel to the Drosophila ether-à-go-go K+ channel.
    Tang CY; Papazian DM
    J Gen Physiol; 1997 Mar; 109(3):301-11. PubMed ID: 9089438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and slow voltage sensor movements in HERG potassium channels.
    Smith PL; Yellen G
    J Gen Physiol; 2002 Mar; 119(3):275-93. PubMed ID: 11865022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Components of gating charge movement and S4 voltage-sensor exposure during activation of hERG channels.
    Wang Z; Dou Y; Goodchild SJ; Es-Salah-Lamoureux Z; Fedida D
    J Gen Physiol; 2013 Apr; 141(4):431-43. PubMed ID: 23478995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of the Activated hERG Channel Voltage Sensor by Depolarization Involves the S4-S5 Linker.
    Thouta S; Hull CM; Shi YP; Sergeev V; Young J; Cheng YM; Claydon TW
    Biophys J; 2017 Jan; 112(2):300-312. PubMed ID: 28122216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation.
    Chanda B; Bezanilla F
    J Gen Physiol; 2002 Nov; 120(5):629-45. PubMed ID: 12407076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.