These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1634053)

  • 1. Effects of radiation on humans during prolonged spaceflight.
    Reynolds RD
    FASEB J; 1992 Jul; 6(10):2870-1. PubMed ID: 1634053
    [No Abstract]   [Full Text] [Related]  

  • 2. Commercial human spaceflight: the new challenge for aerospace medicine.
    Clark JB
    Aviat Space Environ Med; 2007 May; 78(5):542. PubMed ID: 17539453
    [No Abstract]   [Full Text] [Related]  

  • 3. Rethinking and regrouping.
    Dorr RF
    Aerosp Am; 2004 Jan; 42(1):10-2. PubMed ID: 14740653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why send humans to Mars?
    Sagan C
    Issues Sci Technol; 1991; 7(3):80-5. PubMed ID: 11536930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station.
    Baevsky RM; Baranov VM; Funtova II; Diedrich A; Pashenko AV; Chernikova AG; Drescher J; Jordan J; Tank J
    J Appl Physiol (1985); 2007 Jul; 103(1):156-61. PubMed ID: 17446414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences.
    Zhang Y; Moreno-Villanueva M; Krieger S; Ramesh GT; Neelam S; Wu H
    Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28561779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of the neuromuscular unit to spaceflight: what has been learned from the rat model.
    Roy RR; Baldwin KM; Edgerton VR
    Exerc Sport Sci Rev; 1996; 24():399-425. PubMed ID: 8744257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human performance during spaceflight.
    Manzey D; Lorenz B
    Hum Perf Extrem Environ; 1999 Apr; 4(1):8-13. PubMed ID: 12182201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station.
    Leys N; Baatout S; Rosier C; Dams A; s'Heeren C; Wattiez R; Mergeay M
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):227-45. PubMed ID: 19572210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BION-M 1: First continuous blood pressure monitoring in mice during a 30-day spaceflight.
    Andreev-Andrievskiy A; Popova A; Lloret JC; Aubry P; Borovik A; Tsvirkun D; Vinogradova O; Ilyin E; Gauquelin-Koch G; Gharib C; Custaud MA
    Life Sci Space Res (Amst); 2017 May; 13():19-26. PubMed ID: 28554506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of space flight on glycyrrhizic acid-related gene mutation in Glycyrrhiza uralensis].
    Yan S; Gao W; Lu F; Zhao R
    Zhongguo Zhong Yao Za Zhi; 2009 Nov; 34(21):2721-4. PubMed ID: 20209900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spaceflight results in depressed cancellous bone formation in rat humeri.
    Turner RT; Evans GL; Wakley GK
    Aviat Space Environ Med; 1995 Aug; 66(8):770-4. PubMed ID: 7487811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice.
    Yu K; Doherty AH; Genik PC; Gookin SE; Roteliuk DM; Wojda SJ; Jiang ZS; McGee-Lawrence ME; Weil MM; Donahue SW
    Life Sci Space Res (Amst); 2017 Nov; 15():62-68. PubMed ID: 29198315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human space flight.
    Robertson DF
    Nature; 1989 Mar; 338(6210):10. PubMed ID: 2918912
    [No Abstract]   [Full Text] [Related]  

  • 15. Reduction of pituitary AVP and OT contents in rats following spaceflight.
    Wade CE; Keil LC
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A53-7. PubMed ID: 10776454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spaceflight induced changes in the human proteome.
    Kononikhin AS; Starodubtseva NL; Pastushkova LK; Kashirina DN; Fedorchenko KY; Brhozovsky AG; Popov IA; Larina IM; Nikolaev EN
    Expert Rev Proteomics; 2017 Jan; 14(1):15-29. PubMed ID: 27817217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-Spaceflight (STS-135) Mouse Splenocytes Demonstrate Altered Activation Properties and Surface Molecule Expression.
    Hwang SA; Crucian B; Sams C; Actor JK
    PLoS One; 2015; 10(5):e0124380. PubMed ID: 25970640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral Health Policy for Human Spaceflight.
    Morris NP
    Aerosp Med Hum Perform; 2018 Dec; 89(12):1068-1075. PubMed ID: 30487027
    [No Abstract]   [Full Text] [Related]  

  • 19. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight.
    Verheyden B; Beckers F; Couckuyt K; Liu J; Aubert AE
    Acta Physiol (Oxf); 2007 Dec; 191(4):297-308. PubMed ID: 17784903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.