BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16341544)

  • 21. Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain.
    Rapisarda VA; Montelongo LR; Farías RN; Massa EM
    Arch Biochem Biophys; 1999 Oct; 370(2):143-50. PubMed ID: 10510271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hemoglobin vesicles containing methemoglobin and L-tyrosine to suppress methemoglobin formation in vitro and in vivo.
    Atoji T; Aihara M; Sakai H; Tsuchida E; Takeoka S
    Bioconjug Chem; 2006; 17(5):1241-5. PubMed ID: 16984134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of artificial methemoglobin reduction systems in Hb vesicles.
    Takeoka S; Ohgushi T; Sakai H; Kose T; Nishide H; Tsuchida E
    Artif Cells Blood Substit Immobil Biotechnol; 1997; 25(1-2):31-41. PubMed ID: 9083624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monodehydroascorbate as an electron acceptor for NADH reduction by coated vesicle and Golgi apparatus fractions of rat liver.
    Sun I; Morré DJ; Crane FL; Safranski K; Croze EM
    Biochim Biophys Acta; 1984 Feb; 797(2):266-75. PubMed ID: 6141808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NO-degradation by alfalfa class 1 hemoglobin (Mhb1): a possible link to PR-1a gene expression in Mhb1-overproducing tobacco plants.
    Seregélyes C; Igamberdiev AU; Maassen A; Hennig J; Dudits D; Hill RD
    FEBS Lett; 2004 Jul; 571(1-3):61-6. PubMed ID: 15280018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recycling of the ascorbate free radical by human erythrocyte membranes.
    May JM; Qu Z; Cobb CE
    Free Radic Biol Med; 2001 Jul; 31(1):117-24. PubMed ID: 11425497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase.
    Sakihama Y; Mano J; Sano S; Asada K; Yamasaki H
    Biochem Biophys Res Commun; 2000 Dec; 279(3):949-54. PubMed ID: 11162455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ascorbate regeneration in bovine ocular tissues by NADH-dependent semidehydroascorbate reductase.
    Khatami M; Roel LE; Li W; Rockey JH
    Exp Eye Res; 1986 Aug; 43(2):167-75. PubMed ID: 3758216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemoglobins dioxygenate nitric oxide with high fidelity.
    Gardner PR; Gardner AM; Brashear WT; Suzuki T; Hvitved AN; Setchell KD; Olson JS
    J Inorg Biochem; 2006 Apr; 100(4):542-50. PubMed ID: 16439024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dihydrolipoamide dehydrogenase from porcine heart catalyzes NADH-dependent scavenging of nitric oxide.
    Igamberdiev AU; Bykova NV; Ens W; Hill RD
    FEBS Lett; 2004 Jun; 568(1-3):146-50. PubMed ID: 15196936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase.
    Barber MJ; Quinn GB
    Protein Expr Purif; 2001 Nov; 23(2):348-58. PubMed ID: 11676611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methemoglobin reduction by NADH-cytochrome b(5) reductase in Propsilocerus akamusi larvae.
    Maeda S; Kobori H; Tanigawa M; Sato K; Yubisui T; Hori H; Nagata Y
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Jul; 185():54-61. PubMed ID: 25829149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria.
    Stoimenova M; Igamberdiev AU; Gupta KJ; Hill RD
    Planta; 2007 Jul; 226(2):465-74. PubMed ID: 17333252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production and scavenging of nitric oxide by barley root mitochondria.
    Gupta KJ; Kaiser WM
    Plant Cell Physiol; 2010 Apr; 51(4):576-84. PubMed ID: 20185408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyethylene glycol conjugation enhances the nitrite reductase activity of native and cross-linked hemoglobin.
    Lui FE; Dong P; Kluger R
    Biochemistry; 2008 Oct; 47(40):10773-80. PubMed ID: 18795797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purified NADH-cytochrome b5 reductase is a novel superoxide anion source inhibited by apocynin: sensitivity to nitric oxide and peroxynitrite.
    Samhan-Arias AK; Gutierrez-Merino C
    Free Radic Biol Med; 2014 Aug; 73():174-89. PubMed ID: 24816293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobial, dehydroascorbate reductase, and monodehydroascorbate reductase activities of defensin from sweet potato [Ipomoea batatas (L.) Lam. 'Tainong 57'] storage roots.
    Huang GJ; Lai HC; Chang YS; Sheu MJ; Lu TL; Huang SS; Lin YH
    J Agric Food Chem; 2008 May; 56(9):2989-95. PubMed ID: 18393437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of methemoglobin via electron transfer from photoreduced flavin: restoration of O2-binding of concentrated hemoglobin solution coencapsulated in phospholipid vesicles.
    Sakai H; Masada Y; Onuma H; Takeoka S; Tsuchida E
    Bioconjug Chem; 2004; 15(5):1037-45. PubMed ID: 15366957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in intermediate haemoglobins during methaemoglobin reduction by NADPH-flavin reductase.
    Tomoda A; Yubisui T; Tsuji A; Yoneyama Y
    Biochem J; 1979 Apr; 179(1):227-31. PubMed ID: 475757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.