These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16341707)

  • 1. Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen.
    Schmidt M; Grief J; Feierabend J
    Planta; 2006 Mar; 223(4):835-46. PubMed ID: 16341707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA.
    Schmidt M; Dehne S; Feierabend J
    Plant J; 2002 Sep; 31(5):601-13. PubMed ID: 12207650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple coordinate controls contribute to a balanced expression of ribulose-1,5-bisphosphate carboxylase/oxygenase subunits in rye leaves.
    Winter U; Feierabend J
    Eur J Biochem; 1990 Jan; 187(2):445-53. PubMed ID: 2298218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased capacity for synthesis of the D1 protein and of catalase at low temperature in leaves of cold-hardened winter rye (Secale cereale L.).
    Shang W; Schmidt M; Feierabend J
    Planta; 2003 Mar; 216(5):865-73. PubMed ID: 12624774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in gene expression during dehardening of cold-hardened winter rye (Secale cereale L.) leaves and potential role of a peptide methionine sulfoxide reductase in cold-acclimation.
    In O; Berberich T; Romdhane S; Feierabend J
    Planta; 2005 Apr; 220(6):941-50. PubMed ID: 15843963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis reveals the regulatory mechanisms of messenger RNA (mRNA) and long non-coding RNA (lncRNA) in response to waterlogging stress in rye (Secale cereale L.).
    Bimpong D; Zhao L; Ran M; Zhao X; Wu C; Li Z; Wang X; Cheng L; Fang Z; Hu Z; Fan C; Gyebi-Nimako B; Luo Y; Wang S; Zhang Y
    BMC Plant Biol; 2024 Jun; 24(1):534. PubMed ID: 38862913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-peroxide-mediated catalase gene expression in response to wounding.
    Guan LM; Scandalios JG
    Free Radic Biol Med; 2000 Apr; 28(8):1182-90. PubMed ID: 10889447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cDNA cloning and differential gene expression of three catalases in pumpkin.
    Esaka M; Yamada N; Kitabayashi M; Setoguchi Y; Tsugeki R; Kondo M; Nishimura M
    Plant Mol Biol; 1997 Jan; 33(1):141-55. PubMed ID: 9037166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the consequences of aluminium stress in rye: repression of two mitochondrial malate dehydrogenase mRNAs.
    Abd El-Moneim D; Contreras R; Silva-Navas J; Gallego FJ; Figueiras AM; Benito C
    Plant Biol (Stuttg); 2015 Jan; 17(1):123-33. PubMed ID: 24946232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalase transcript accumulation in response to dehydration and osmotic stress in leaves of maize viviparous mutants.
    Guan LM; Scandalios JG
    Redox Rep; 2000; 5(6):377-83. PubMed ID: 11140749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus.
    Dahal K; Kane K; Gadapati W; Webb E; Savitch LV; Singh J; Sharma P; Sarhan F; Longstaffe FJ; Grodzinski B; Hüner NP
    Physiol Plant; 2012 Feb; 144(2):169-88. PubMed ID: 21883254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3'-untranslated region exchange experiments in the Arabidopsis cat2 photorespiratory mutant.
    Hu YQ; Liu S; Yuan HM; Li J; Yan DW; Zhang JF; Lu YT
    Plant Cell Environ; 2010 Oct; 33(10):1656-70. PubMed ID: 20492555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malate metabolism and reactions of oxidoreduction in cold-hardened winter rye (Secale cereale L.) leaves.
    Crecelius F; Streb P; Feierabend J
    J Exp Bot; 2003 Mar; 54(384):1075-83. PubMed ID: 12598577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and VIGS-based characterization of Bx1 ortholog in rye (Secale cereale L.).
    Groszyk J; Kowalczyk M; Yanushevska Y; Stochmal A; Rakoczy-Trojanowska M; Orczyk W
    PLoS One; 2017; 12(2):e0171506. PubMed ID: 28234909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of UV-light on the expression of the Cat2 and Cat3 catalase genes in maize.
    Boldt R; Scandalios JG
    Free Radic Biol Med; 1997; 23(3):505-14. PubMed ID: 9214589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat.
    Luna CM; Pastori GM; Driscoll S; Groten K; Bernard S; Foyer CH
    J Exp Bot; 2005 Jan; 56(411):417-23. PubMed ID: 15569704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhythmic regulation of the light-harvesting chlorophyll a/b protein and the small subunit of ribulose-1,5-bisphosphate carboxylase mRNA in rye seedlings.
    Ernst D; Apfelböck A; Bergmann A; Weyrauch C
    Photochem Photobiol; 1990 Jul; 52(1):29-33. PubMed ID: 2204946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions.
    Hertwig B; Streb P; Feierabend J
    Plant Physiol; 1992 Nov; 100(3):1547-53. PubMed ID: 16653156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of the maize catalase genes during kernel development: the role of steady-state mRNA levels.
    Wadsworth GJ; Scandalios JG
    Dev Genet; 1989; 10(4):304-10. PubMed ID: 2791351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cell type-specific view on the translation of mRNAs from ROS-responsive genes upon paraquat treatment of Arabidopsis thaliana leaves.
    Benina M; Ribeiro DM; Gechev TS; Mueller-Roeber B; Schippers JH
    Plant Cell Environ; 2015 Feb; 38(2):349-63. PubMed ID: 24738758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.