These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16341853)

  • 1. Brain tissue phantoms for optical near infrared imaging.
    Rao KP; Radhakrishnan S; Reddy MR
    Exp Brain Res; 2006 Apr; 170(4):433-7. PubMed ID: 16341853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for determination of the absorption and scattering properties interstitially in turbid media.
    Dimofte A; Finlay JC; Zhu TC
    Phys Med Biol; 2005 May; 50(10):2291-311. PubMed ID: 15876668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the optical properties of the skull in the wavelength range 650-950 nm.
    Firbank M; Hiraoka M; Essenpreis M; Delpy DT
    Phys Med Biol; 1993 Apr; 38(4):503-10. PubMed ID: 8488176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Wave Spectroscopy with Diffusion Theory for Quantification of Optical Properties: Comparison Between Multi-distance and Multi-wavelength Data Fitting Methods.
    Lin YC; Lin ZF; Nioka S; Chen LH; Tseng SH; Chung PC
    Adv Exp Med Biol; 2016; 923():337-343. PubMed ID: 27526161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of traceable measurement of the diffuse optical properties of solid reference standards for biomedical optics at National Institute of Standards and Technology.
    Lemaillet P; Bouchard JP; Allen DW
    Appl Opt; 2015 Jul; 54(19):6118-27. PubMed ID: 26193162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser backscattering and transillumination imaging of human tissues and their equivalent phantoms.
    Srinivasan R; Singh M
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):724-30. PubMed ID: 12814239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of biological tissue-equivalent phantoms for optical imaging.
    Srinivasan R; Singh M
    Indian J Exp Biol; 2002 May; 40(5):531-5. PubMed ID: 12622197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical phantom materials for near infrared laser photocoagulation studies.
    Iizuka MN; Sherar MD; Vitkin IA
    Lasers Surg Med; 1999; 25(2):159-69. PubMed ID: 10455223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of spatial and temporal variations in the optical properties of tissuelike media with diffuse reflectance imaging.
    Fabbri F; Franceschini MA; Fantini S
    Appl Opt; 2003 Jun; 42(16):3063-72. PubMed ID: 12790458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multislice tomographic imaging and analysis of human breast-equivalent phantoms and biological tissues.
    Srinivasan R; Singh M
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1830-7. PubMed ID: 15490830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm.
    Troy TL; Thennadil SN
    J Biomed Opt; 2001 Apr; 6(2):167-76. PubMed ID: 11375726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical properties of biomimetic probes engineered from erythrocytes.
    Burns JM; Saager R; Majaron B; Jia W; Anvari B
    Nanotechnology; 2017 Jan; 28(3):035101. PubMed ID: 27966473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography.
    Sukowski U; Schubert F; Grosenick D; Rinneberg H
    Phys Med Biol; 1996 Sep; 41(9):1823-44. PubMed ID: 8884914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics.
    Spirou GM; Oraevsky AA; Vitkin IA; Whelan WM
    Phys Med Biol; 2005 Jul; 50(14):N141-53. PubMed ID: 16177502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes.
    Lo JY; Yu B; Fu HL; Bender JE; Palmer GM; Kuech TF; Ramanujam N
    Opt Express; 2009 Feb; 17(3):1372-84. PubMed ID: 19188966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental test of theoretical models for time-resolved reflectance.
    Cubeddu R; Pifferi A; Taroni P; Torricelli A; Valentini G
    Med Phys; 1996 Sep; 23(9):1625-33. PubMed ID: 8892260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
    Kim H; Hau NT; Chae YG; Lee BI; Kang HW
    Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimodal optical setup based on spectrometer and cameras combination for biological tissue characterization with spatially modulated illumination.
    Baruch D; Abookasis D
    J Biomed Opt; 2017 Apr; 22(4):46007. PubMed ID: 28425559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.