These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16341918)

  • 1. Macromolecular transport in the arterial wall: alternative models for estimating barriers.
    Lee K; Saidel GM; Penn MS
    Ann Biomed Eng; 2005 Nov; 33(11):1491-503. PubMed ID: 16341918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular transport in the arterial intima: comparison of chronic and acute injuries.
    Penn MS; Rangaswamy S; Saidel GM; Chisolm GM
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1560-70. PubMed ID: 9139937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure.
    Liu X; Fan Y; Deng X
    J Theor Biol; 2011 Aug; 283(1):71-81. PubMed ID: 21645523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study.
    Karner G; Perktold K
    J Biomech; 2000 Jun; 33(6):709-15. PubMed ID: 10807992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative significance of endothelium and internal elastic lamina in regulating the entry of macromolecules into arteries in vivo.
    Penn MS; Saidel GM; Chisolm GM
    Circ Res; 1994 Jan; 74(1):74-82. PubMed ID: 8261597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H905-13. PubMed ID: 15016628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima.
    Huang Y; Rumschitzki D; Chien S; Weinbaum S
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H2023-39. PubMed ID: 9139991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1589-97. PubMed ID: 10775138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular injury by endotoxin: changes in macromolecular transport parameters in rat aortas in vivo.
    Penn MS; Saidel GM; Chisolm GM
    Am J Physiol; 1992 May; 262(5 Pt 2):H1563-71. PubMed ID: 1590461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeability change of arterial endothelium is an age-dependent function of lesion size in apolipoprotein E-null mice.
    Lee K; Saidel GM; Penn MS
    Am J Physiol Heart Circ Physiol; 2008 Dec; 295(6):H2273-9. PubMed ID: 18835923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima.
    Huang Y; Rumschitzki D; Chien S; Weinbaum S
    J Biomech Eng; 1994 Nov; 116(4):430-45. PubMed ID: 7869719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport pathways for macromolecules in the aortic endothelium. II. The distribution analysis of plasmalemmal vesicles reconstructed by serial sections.
    Ogawa K; Taniguchi K
    Anat Rec; 1993 Nov; 237(3):358-64. PubMed ID: 8291689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model.
    Comerford A; Plank MJ; David T
    J Biomech Eng; 2008 Feb; 130(1):011010. PubMed ID: 18298186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport in rat vessel walls. II. Macromolecular leakage and focal spot size growth in rat arteries and veins.
    Shou Y; Jan KM; Rumschitzki DS
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2881-90. PubMed ID: 17209003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow shear stress affects macromolecular accumulation through modulation of internal elastic lamina fenestrae.
    Guo ZY; Yan ZQ; Bai L; Zhang ML; Jiang ZL
    Clin Biomech (Bristol); 2008; 23 Suppl 1():S104-11. PubMed ID: 17923177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic influences on the arterial wall.
    Kingwell B; Boutouyrie P
    Clin Exp Pharmacol Physiol; 2007 Jul; 34(7):652-7. PubMed ID: 17581225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The internal elastic lamina in normal and abnormal human arteries. A barrier to the diffusion of macromolecules from the lumen.
    Sims FH
    Artery; 1989; 16(3):159-73. PubMed ID: 2730349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-density lipoprotein transport within a multi-layered arterial wall--effect of the atherosclerotic plaque/stenosis.
    Chung S; Vafai K
    J Biomech; 2013 Feb; 46(3):574-85. PubMed ID: 23089456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.