BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16341926)

  • 1. Improving hollow fiber dialyzer efficiency with a recirculating dialysate system II: comparison against two-chamber dialysis systems.
    Prado M; Roa LM; Palma A; Milán JA
    Ann Biomed Eng; 2005 Nov; 33(11):1595-606. PubMed ID: 16341926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving hollow fiber dialyzer efficiency with a recirculating dialysate system. I: Theory and applicability.
    Prado M; Roa LM; Palma A; Milán JA
    Ann Biomed Eng; 2005 May; 33(5):642-55. PubMed ID: 15981864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study.
    Azar AT
    Saudi J Kidney Dis Transpl; 2009 Nov; 20(6):1023-9. PubMed ID: 19861865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.
    Leypoldt JK; Kamerath CD; Gilson JF; Friederichs G
    ASAIO J; 2006; 52(4):404-9. PubMed ID: 16883120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of dialyzer jacket structure and hollow-fiber dialysis membranes to achieve high dialysis performance.
    Hirano A; Yamamoto K; Matsuda M; Ogawa T; Yakushiji T; Miyasaka T; Sakai K
    Ther Apher Dial; 2011 Feb; 15(1):66-74. PubMed ID: 21272255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining dialysate and blood recirculation to boost uremic toxin removal: theory and simulation study.
    Prado M; Roa L
    Artif Organs; 2007 Dec; 31(12):895-901. PubMed ID: 17924986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle molecule removal in low-flux polysulfone dialyzers: impact of flows and surface area on whole-body and dialyzer clearances.
    Eloot S; de Vos JY; de Vos F; Hombrouckx R; Verdonck P
    Hemodial Int; 2005 Oct; 9(4):399-408. PubMed ID: 16219061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of convective transport on dialyzer clearance.
    Galach M; Ciechanowska A; Sabalińska S; Waniewski J; Wójcicki J; Weryńskis A
    J Artif Organs; 2003; 6(1):42-8. PubMed ID: 14598124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new synthetic dialyzer with advanced permselectivity for enhanced low-molecular weight protein removal.
    Krieter DH; Lemke HD; Wanner C
    Artif Organs; 2008 Jul; 32(7):547-54. PubMed ID: 18638309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood and dialysate flow distributions in hollow-fiber hemodialyzers analyzed by computerized helical scanning technique.
    Ronco C; Brendolan A; Crepaldi C; Rodighiero M; Scabardi M
    J Am Soc Nephrol; 2002 Jan; 13 Suppl 1():S53-61. PubMed ID: 11792763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dialyzer fiber bundle volume during hemodialysis using large-surface dialyzers.
    Leblanc M; Lafrance JP; Renald A
    ASAIO J; 2006; 52(6):646-51. PubMed ID: 17117054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of urea clearance in low-efficiency low-flux vs. high-efficiency high-flux dialyzer membrane with reduced blood and dialysate flow: an in vitro analysis.
    Munshi R; Ahmad S
    Hemodial Int; 2014 Jan; 18(1):172-4. PubMed ID: 23714225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Factors which influence phosphorus removal in hemodialysis].
    Gallar P; Ortiz M; Ortega O; Rodríguez I; Seijas V; Carreño A; Oliet A; Vigil A
    Nefrologia; 2007; 27(1):46-52. PubMed ID: 17402879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of dialyzer membrane flux in bio-incompatibility.
    Davenport A
    Hemodial Int; 2008 Oct; 12 Suppl 2():S29-33. PubMed ID: 18837767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does an alteration of dialyzer design and geometry affect biocompatibility parameters?
    Opatrný K; Krouzzecký A; Polanská K; Mares J; Tomsů M; Bowry SK; Vienken J
    Hemodial Int; 2006 Apr; 10(2):201-8. PubMed ID: 16623675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dialyzer reuse--part II: advantages and disadvantages.
    Twardowski ZJ
    Semin Dial; 2006; 19(3):217-26. PubMed ID: 16689973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical characterization of dialysis fluid flow of newly developed dialyzers using mass transfer correlation equations.
    Kunikata S; Fukuda M; Yamamoto K; Yagi Y; Matsuda M; Sakai K
    ASAIO J; 2009; 55(3):231-5. PubMed ID: 19357496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets.
    Yamamoto K; Matsuda M; Hirano A; Takizawa N; Iwashima S; Yakushiji T; Fukuda M; Miyasaka T; Sakai K
    Artif Organs; 2009 Jun; 33(6):481-6. PubMed ID: 19473145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Use of the adsorption method for regeneration of dialysate in hemodialysis (Redy-system) (author's transl)].
    Eberhard K; Thomae U; Frowein Gv; Kuhlmann H
    Med Klin; 1975 Feb; 70(8):323-7. PubMed ID: 1124044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.