These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 16342039)
1. Reconfigurable systems for sequence alignment and for general dynamic programming. Jacobi RP; Ayala-Rincón M; Carvalho LG; Llanos CH; Hartenstein RW Genet Mol Res; 2005 Sep; 4(3):543-52. PubMed ID: 16342039 [TBL] [Abstract][Full Text] [Related]
2. High speed biological sequence analysis with hidden Markov models on reconfigurable platforms. Oliver TF; Schmidt B; Jakop Y; Maskell DL IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):740-6. PubMed ID: 19273034 [TBL] [Abstract][Full Text] [Related]
3. Cache-oblivious dynamic programming for bioinformatics. Chowdhury RA; Le HS; Ramachandran V IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(3):495-510. PubMed ID: 20671320 [TBL] [Abstract][Full Text] [Related]
4. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA). Li IT; Shum W; Truong K BMC Bioinformatics; 2007 Jun; 8():185. PubMed ID: 17555593 [TBL] [Abstract][Full Text] [Related]
7. A simple genetic algorithm for multiple sequence alignment. Gondro C; Kinghorn BP Genet Mol Res; 2007 Oct; 6(4):964-82. PubMed ID: 18058716 [TBL] [Abstract][Full Text] [Related]
8. High-speed multiple sequence alignment on a reconfigurable platform. Oliver T; Schmidt B; Maskell D; Nathan D; Clemens R Int J Bioinform Res Appl; 2006; 2(4):394-406. PubMed ID: 18048180 [TBL] [Abstract][Full Text] [Related]
9. Fast model-based protein homology detection without alignment. Hochreiter S; Heusel M; Obermayer K Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755 [TBL] [Abstract][Full Text] [Related]
10. Using iterative methods for global multiple sequence alignment. Mount DW Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.top44. PubMed ID: 20147225 [TBL] [Abstract][Full Text] [Related]
11. The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Moretti S; Armougom F; Wallace IM; Higgins DG; Jongeneel CV; Notredame C Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W645-8. PubMed ID: 17526519 [TBL] [Abstract][Full Text] [Related]
12. A space-efficient algorithm for the constrained pairwise sequence alignment problem. He D; Arslan AN Genome Inform; 2005; 16(2):237-46. PubMed ID: 16901106 [TBL] [Abstract][Full Text] [Related]
13. Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW. Oliver T; Schmidt B; Nathan D; Clemens R; Maskell D Bioinformatics; 2005 Aug; 21(16):3431-2. PubMed ID: 15919726 [TBL] [Abstract][Full Text] [Related]
14. A local multiple alignment method for detection of non-coding RNA sequences. Tabei Y; Asai K Bioinformatics; 2009 Jun; 25(12):1498-505. PubMed ID: 19376823 [TBL] [Abstract][Full Text] [Related]
15. INFO-RNA--a server for fast inverse RNA folding satisfying sequence constraints. Busch A; Backofen R Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W310-3. PubMed ID: 17452349 [TBL] [Abstract][Full Text] [Related]
16. Using progressive methods for global multiple sequence alignment. Mount DW Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.top43. PubMed ID: 20147224 [TBL] [Abstract][Full Text] [Related]
17. A generalized threading model using integer programming that allows for secondary structure element deletion. Ellrott K; Guo JT; Olman V; Xu Y Genome Inform; 2006; 17(2):248-58. PubMed ID: 17503397 [TBL] [Abstract][Full Text] [Related]