These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16342323)

  • 1. Capillary electrophoresis versus differential scanning calorimetry for the analysis of free enzyme versus enzyme-ligand complexes: in the search of the ligand-free status of cholinesterases.
    Rochu D; Cléry-Barraud C; Renault F; Chevalier A; Bon C; Masson P
    Electrophoresis; 2006 Feb; 27(2):442-51. PubMed ID: 16342323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of unwanted protein-bound ligands by capillary zone electrophoresis: the case of hidden ligands that stabilize cholinesterase conformation.
    Rochu D; Renault F; Masson P
    Electrophoresis; 2002 Mar; 23(6):930-7. PubMed ID: 11920879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability of acetylcholinesterase from Bungarus fasciatus venom as investigated by capillary electrophoresis.
    Rochu D; Georges C; Répiton J; Viguié N; Saliou B; Bon C; Masson P
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):216-26. PubMed ID: 11342047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further studies on the interaction of the 5-hydroxytryptamine3 (5-HT3) receptor with arylpiperazine ligands. development of a new 5-HT3 receptor ligand showing potent acetylcholinesterase inhibitory properties.
    Cappelli A; Gallelli A; Manini M; Anzini M; Mennuni L; Makovec F; Menziani MC; Alcaro S; Ortuso F; Vomero S
    J Med Chem; 2005 May; 48(10):3564-75. PubMed ID: 15887964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular docking studies of natural cholinesterase-inhibiting steroidal alkaloids from Sarcococca saligna.
    Zaheer-Ul-Haq ZU; Wellenzohn B; Liedl KR; Rode BM
    J Med Chem; 2003 Nov; 46(23):5087-90. PubMed ID: 14584959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors.
    Campiani G; Fattorusso C; Butini S; Gaeta A; Agnusdei M; Gemma S; Persico M; Catalanotti B; Savini L; Nacci V; Novellino E; Holloway HW; Greig NH; Belinskaya T; Fedorko JM; Saxena A
    J Med Chem; 2005 Mar; 48(6):1919-29. PubMed ID: 15771436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular basis of interactions of cholinesterases with tight binding inhibitors.
    Radić Z; Manetsch R; Krasiński A; Raushel J; Yamauchi J; Garcia C; Kolb H; Sharpless KB; Taylor P
    Chem Biol Interact; 2005 Dec; 157-158():133-41. PubMed ID: 16289416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor.
    Matulis D; Kranz JK; Salemme FR; Todd MJ
    Biochemistry; 2005 Apr; 44(13):5258-66. PubMed ID: 15794662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based alignment and comparative molecular field analysis of acetylcholinesterase inhibitors.
    Cho SJ; Garsia ML; Bier J; Tropsha A
    J Med Chem; 1996 Dec; 39(26):5064-71. PubMed ID: 8978837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge.
    Tara S; Elcock AH; Kirchhoff PD; Briggs JM; Radic Z; Taylor P; McCammon JA
    Biopolymers; 1998 Dec; 46(7):465-74. PubMed ID: 9838872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual effect of high electric field in capillary electrophoresis study of the conformational stability of Bungarus fasciatus acetylcholinesterase.
    Rochu D; Pernet T; Renault F; Bon C; Masson P
    J Chromatogr A; 2001 Mar; 910(2):347-57. PubMed ID: 11261729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A docking score function for estimating ligand-protein interactions: application to acetylcholinesterase inhibition.
    Guo J; Hurley MM; Wright JB; Lushington GH
    J Med Chem; 2004 Oct; 47(22):5492-500. PubMed ID: 15481986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting protein fluctuations at the active-site gorge of human cholinesterases: further optimization of the design strategy to develop extremely potent inhibitors.
    Butini S; Campiani G; Borriello M; Gemma S; Panico A; Persico M; Catalanotti B; Ros S; Brindisi M; Agnusdei M; Fiorini I; Nacci V; Novellino E; Belinskaya T; Saxena A; Fattorusso C
    J Med Chem; 2008 Jun; 51(11):3154-70. PubMed ID: 18479118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking and quantum mechanic studies on cholinesterases and their inhibitors.
    Correa-Basurto J; Flores-Sandoval C; Marín-Cruz J; Rojo-Domínguez A; Espinoza-Fonseca LM; Trujillo-Ferrara JG
    Eur J Med Chem; 2007 Jan; 42(1):10-9. PubMed ID: 17055616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium effect on the acetylcholinesterase inhibition mechanism: a molecular chromatographic approach.
    Ibrahim F; Guillaume YC; Thomassin M; André C
    Talanta; 2009 Aug; 79(3):804-9. PubMed ID: 19576448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced fit in mouse acetylcholinesterase upon binding a femtomolar inhibitor: a molecular dynamics study.
    Senapati S; Bui JM; McCammon JA
    J Med Chem; 2005 Dec; 48(26):8155-62. PubMed ID: 16366597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into conformational flexibility at the peripheral site and within the active center gorge of AChE.
    Bourne Y; Radić Z; Kolb HC; Sharpless KB; Taylor P; Marchot P
    Chem Biol Interact; 2005 Dec; 157-158():159-65. PubMed ID: 16259971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on dual-site inhibitors of acetylcholinesterase: Highly potent derivatives of bis- and bifunctional huperzine B.
    He XC; Feng S; Wang ZF; Shi Y; Zheng S; Xia Y; Jiang H; Tang XC; Bai D
    Bioorg Med Chem; 2007 Feb; 15(3):1394-408. PubMed ID: 17126020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of organophosphorus and related compounds with cholinesterases, a theoretical study.
    Hurley MM; Balboa A; Lushington GH; Guo J
    Chem Biol Interact; 2005 Dec; 157-158():321-5. PubMed ID: 16289061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.