These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
646 related articles for article (PubMed ID: 16342482)
1. Finite-element neural networks for solving differential equations. Ramuhalli P; Udpa L; Udpa SS IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482 [TBL] [Abstract][Full Text] [Related]
2. Solving the ECG forward problem by means of a meshless finite element method. Li ZS; Zhu SA; He B Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567 [TBL] [Abstract][Full Text] [Related]
3. GPU-based acceleration of computations in nonlinear finite element deformation analysis. Mafi R; Sirouspour S Int J Numer Method Biomed Eng; 2014 Mar; 30(3):365-81. PubMed ID: 24166875 [TBL] [Abstract][Full Text] [Related]
4. A delayed neural network for solving linear projection equations and its analysis. Liu Q; Cao J; Xia Y IEEE Trans Neural Netw; 2005 Jul; 16(4):834-43. PubMed ID: 16121725 [TBL] [Abstract][Full Text] [Related]
5. Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography: part I. Guven M; Reilly-Raska L; Zhou L; Yazici B IEEE Trans Med Imaging; 2010 Feb; 29(2):217-29. PubMed ID: 20129842 [TBL] [Abstract][Full Text] [Related]
6. A Mixed Finite Element Method to Solve the EEG Forward Problem. Vorwerk J; Engwer C; Pursiainen S; Wolters CH IEEE Trans Med Imaging; 2017 Apr; 36(4):930-941. PubMed ID: 27831869 [TBL] [Abstract][Full Text] [Related]
7. A novel neural network for variational inequalities with linear and nonlinear constraints. Gao XB; Liao LZ; Qi L IEEE Trans Neural Netw; 2005 Nov; 16(6):1305-17. PubMed ID: 16342476 [TBL] [Abstract][Full Text] [Related]
8. Methods and framework for visualizing higher-order finite elements. Schroeder WJ; Bertel F; Malaterre M; Thompson D; Pébay PP; O'Bara R; Tendulkar S IEEE Trans Vis Comput Graph; 2006; 12(4):446-60. PubMed ID: 16805255 [TBL] [Abstract][Full Text] [Related]
9. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations. Huang CH; Lin CC; Ju MS Comput Biol Med; 2015 Feb; 57():150-8. PubMed ID: 25557200 [TBL] [Abstract][Full Text] [Related]
10. Computational techniques for solving the bidomain equations in three dimensions. Vigmond EJ; Aguel F; Trayanova NA IEEE Trans Biomed Eng; 2002 Nov; 49(11):1260-9. PubMed ID: 12450356 [TBL] [Abstract][Full Text] [Related]
11. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Li S; Li Y; Wang Z Neural Netw; 2013 Mar; 39():27-39. PubMed ID: 23334164 [TBL] [Abstract][Full Text] [Related]
12. Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model. Liu H; Sun W Comput Methods Biomech Biomed Engin; 2016; 19(11):1171-80. PubMed ID: 26692168 [TBL] [Abstract][Full Text] [Related]
13. A second-order finite element algorithm for solving the three-dimensional EEG forward problem. Zhang YC; Zhu SA; He B Phys Med Biol; 2004 Jul; 49(13):2975-87. PubMed ID: 15285259 [TBL] [Abstract][Full Text] [Related]
15. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models. Arbabi V; Pouran B; Weinans H; Zadpoor AA J Biomech; 2016 Sep; 49(13):2799-2805. PubMed ID: 27393413 [TBL] [Abstract][Full Text] [Related]
16. Numerical solution of Maxwell equations by a finite-difference time-domain method in a medium with frequency and spatial dispersion. Potravkin NN; Perezhogin IA; Makarov VA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056706. PubMed ID: 23214905 [TBL] [Abstract][Full Text] [Related]
17. Neural network for solving convex quadratic bilevel programming problems. He X; Li C; Huang T; Li C Neural Netw; 2014 Mar; 51():17-25. PubMed ID: 24333480 [TBL] [Abstract][Full Text] [Related]
18. A fast parallel solver for the forward problem in electrical impedance tomography. Jehl M; Dedner A; Betcke T; Aristovich K; Klöfkorn R; Holder D IEEE Trans Biomed Eng; 2015 Jan; 62(1):126-37. PubMed ID: 25069109 [TBL] [Abstract][Full Text] [Related]
19. A nonfeasible gradient projection recurrent neural network for equality-constrained optimization problems. Barbarosou MP; Maratos NG IEEE Trans Neural Netw; 2008 Oct; 19(10):1665-77. PubMed ID: 18842472 [TBL] [Abstract][Full Text] [Related]
20. A deformable finite element derived finite difference method for cardiac activation problems. Buist M; Sands G; Hunter P; Pullan A Ann Biomed Eng; 2003 May; 31(5):577-88. PubMed ID: 12757201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]