These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
26. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS). Htet AT; Saturnino GB; Burnham EH; Noetscher GM; Nummenmaa A; Makarov SN J Neural Eng; 2019 Apr; 16(2):024001. PubMed ID: 30605893 [TBL] [Abstract][Full Text] [Related]
27. Toward the training of feed-forward neural networks with the D-optimum input sequence. Witczak M IEEE Trans Neural Netw; 2006 Mar; 17(2):357-73. PubMed ID: 16566464 [TBL] [Abstract][Full Text] [Related]
28. Simulation of nanoparticle transport in airways using Petrov-Galerkin finite element methods. Rajaraman P; Heys JJ Int J Numer Method Biomed Eng; 2014 Jan; 30(1):103-16. PubMed ID: 23982945 [TBL] [Abstract][Full Text] [Related]
29. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics. Liang L; Liu M; Elefteriades J; Sun W Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344 [TBL] [Abstract][Full Text] [Related]
30. Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method. Reck K; Thomsen EV; Hansen O Opt Express; 2011 Jan; 19(3):1808-23. PubMed ID: 21368995 [TBL] [Abstract][Full Text] [Related]
31. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration. Xia Y; Sun C; Zheng WX IEEE Trans Neural Netw Learn Syst; 2012 May; 23(5):812-20. PubMed ID: 24806129 [TBL] [Abstract][Full Text] [Related]
32. An iterative finite element-based method for solving inverse problems in traction force microscopy. Cóndor M; García-Aznar JM Comput Methods Programs Biomed; 2019 Dec; 182():105056. PubMed ID: 31542705 [TBL] [Abstract][Full Text] [Related]
33. Quasi-Lagrangian neural network for convex quadratic optimization. Costantini G; Perfetti R; Todisco M IEEE Trans Neural Netw; 2008 Oct; 19(10):1804-9. PubMed ID: 18842483 [TBL] [Abstract][Full Text] [Related]
34. Dipole models for the EEG and MEG. Schimpf PH; Ramon C; Haueisen J IEEE Trans Biomed Eng; 2002 May; 49(5):409-18. PubMed ID: 12002172 [TBL] [Abstract][Full Text] [Related]
35. Neural network for constrained nonsmooth optimization using Tikhonov regularization. Qin S; Fan D; Wu G; Zhao L Neural Netw; 2015 Mar; 63():272-81. PubMed ID: 25590563 [TBL] [Abstract][Full Text] [Related]
36. Local-gauge finite-element method for electron waves in magnetic fields. Ueta T; Miyagawa Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026707. PubMed ID: 23005882 [TBL] [Abstract][Full Text] [Related]
37. Neural Network Approaches for Soft Biological Tissue and Organ Simulations. Sacks MS; Motiwale S; Goodbrake C; Zhang W J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891 [TBL] [Abstract][Full Text] [Related]
38. Simple and fast calculation of the second-order gradients for globalized dual heuristic dynamic programming in neural networks. Fairbank M; Alonso E; Prokhorov D IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1671-6. PubMed ID: 24808011 [TBL] [Abstract][Full Text] [Related]
39. Three-dimensional uniform grid modeling of electrical defibrillation on a data parallel computer. Gao S; Nadeem A; Deale OC; Lerman BB; Ng KT Comput Biol Med; 1995 May; 25(3):335-48. PubMed ID: 7554850 [TBL] [Abstract][Full Text] [Related]