These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16342491)

  • 1. Speeding up the learning of robot kinematics through function decomposition.
    Ruiz de Angulo V; Torras C
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1504-12. PubMed ID: 16342491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning inverse kinematics: reduced sampling through decomposition into virtual robots.
    de Angulo VR; Torras C
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1571-7. PubMed ID: 19022727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and production of robot trajectories using the Temporal Parametrized Self Organizing Maps.
    Padoan Junior AC; De A Barreto G; Araújo AF
    Int J Neural Syst; 2003 Apr; 13(2):119-27. PubMed ID: 12923925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of artificial intelligence in safe human-robot interactions.
    Najmaei N; Kermani MR
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):448-59. PubMed ID: 20699212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network control of multifingered robot hands using visual feedback.
    Zhao Y; Cheah CC
    IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots.
    Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L
    Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General robot kinematics decomposition without intermediate markers.
    Ulbrich S; de Angulo VR; Asfour T; Torras C; Dillmann R
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):620-30. PubMed ID: 24805045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics and workspace analysis of 4SPRR-SPR parallel robots.
    Luo L; Hou L; Zhang Q; Wei Y; Wu Y
    PLoS One; 2021; 16(1):e0239150. PubMed ID: 33471792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotics, motor learning, and neurologic recovery.
    Reinkensmeyer DJ; Emken JL; Cramer SC
    Annu Rev Biomed Eng; 2004; 6():497-525. PubMed ID: 15255778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A limit-cycle self-organizing map architecture for stable arm control.
    Huang DW; Gentili RJ; Katz GE; Reggia JA
    Neural Netw; 2017 Jan; 85():165-181. PubMed ID: 27855307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control.
    Xia YS; Feng G; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2005 Feb; 35(1):54-64. PubMed ID: 15719933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural network approach to dynamic task assignment of multirobots.
    Zhu A; Yang SX
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1278-87. PubMed ID: 17001987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time robot path planning based on a modified pulse-coupled neural network model.
    Qu H; Yang SX; Willms AR; Yi Z
    IEEE Trans Neural Netw; 2009 Nov; 20(11):1724-39. PubMed ID: 19775961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous learning in humanoid robotics through mental imagery.
    Di Nuovo AG; Marocco D; Di Nuovo S; Cangelosi A
    Neural Netw; 2013 May; 41():147-55. PubMed ID: 23122490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized sampling-based motion planners.
    Chakravorty S; Kumar S
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):855-66. PubMed ID: 21278023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.