BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16342534)

  • 1. Sustained and complete hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation in zero-valent iron simulated barriers under different microbial conditions.
    Shrout JD; Larese-Casanova P; Scherer MM; Alvarez PJ
    Environ Technol; 2005 Oct; 26(10):1115-26. PubMed ID: 16342534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions.
    Zhao JS; Greer CW; Thiboutot S; Ampleman G; Hawari J
    Can J Microbiol; 2004 Feb; 50(2):91-6. PubMed ID: 15052310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of RDX degradation by zero-valent iron (ZVI).
    Wanaratna P; Christodoulatos C; Sidhoum M
    J Hazard Mater; 2006 Aug; 136(1):68-74. PubMed ID: 16386362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material.
    Kwon MJ; Finneran KT
    Biodegradation; 2010 Nov; 21(6):923-37. PubMed ID: 20424887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens.
    Kwon MJ; Finneran KT
    Biodegradation; 2008 Sep; 19(5):705-15. PubMed ID: 18239998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material.
    Kwon MJ; O'Loughlin EJ; Antonopoulos DA; Finneran KT
    Chemosphere; 2011 Aug; 84(9):1223-30. PubMed ID: 21664641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RDX degradation using an integrated Fe(0)-microbial treatment approach.
    Wildman MJ; Alvarez PJ
    Water Sci Technol; 2001; 43(2):25-33. PubMed ID: 11380187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrolytic transformation of ordinance related compounds (ORCs) in groundwater: laboratory mass balance studies.
    Wani AH; O'Neal BR; Gilbert DM; Gent DB; Davis JL
    Chemosphere; 2006 Feb; 62(5):689-98. PubMed ID: 16081140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions.
    Fuller ME; Hatzinger PB; Condee CW; Andaya C; Rezes R; Michalsen MM; Crocker FH; Indest KJ; Jung CM; Alon Blakeney G; Istok JD; Hammett SA
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5557-5567. PubMed ID: 28417168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron.
    Oh SY; Chiu PC; Kim BJ; Cha DK
    Water Res; 2003 Oct; 37(17):4275-83. PubMed ID: 12946911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zero-valent iron pretreatment for enhancing the biodegradability of RDX.
    Oh SY; Chiu PC; Kim BJ; Cha DK
    Water Res; 2005 Dec; 39(20):5027-32. PubMed ID: 16290903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers.
    Ahmad F; Schnitker SP; Newell CJ
    J Contam Hydrol; 2007 Feb; 90(1-2):1-20. PubMed ID: 17067719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron shuttle-mediated biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine adsorbed to granular activated carbon.
    Millerick K; Drew SR; Finneran KT
    Environ Sci Technol; 2013 Aug; 47(15):8743-50. PubMed ID: 23837558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine by extracellular electron shuttling compounds.
    Kwon MJ; Finneran KT
    Appl Environ Microbiol; 2006 Sep; 72(9):5933-41. PubMed ID: 16957213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cosubstrate independent mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a Desulfovibrio species under anaerobic conditions.
    Arnett CM; Adrian NR
    Biodegradation; 2009 Feb; 20(1):15-26. PubMed ID: 18459059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Fe0 quantity on the efficiency of integrated microbial-Fe0 treatment processes.
    Fernandez-Sanchez JM; Sawvel EJ; Alvarez PJ
    Chemosphere; 2004 Feb; 54(7):823-9. PubMed ID: 14637339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.
    Jaramillo AM; Douglas TA; Walsh ME; Trainor TP
    Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a contaminated vadose zone.
    Ronen Z; Yanovich Y; Goldin R; Adar E
    Chemosphere; 2008 Nov; 73(9):1492-8. PubMed ID: 18774159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions.
    Wu Y; Versteeg R; Slater L; LaBrecque D
    J Contam Hydrol; 2009 May; 106(3-4):131-43. PubMed ID: 19342119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions.
    Gandhi S; Oh BT; Schnoor JL; Alvarez PJ
    Water Res; 2002 Apr; 36(8):1973-82. PubMed ID: 12092572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.