These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16342540)

  • 1. Selenate removal from sulfate containing aqueous solutions.
    Jegadeesan G; Mondal K; Lalvani SB
    Environ Technol; 2005 Oct; 26(10):1181-7. PubMed ID: 16342540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors.
    Lenz M; Hullebusch ED; Hommes G; Corvini PF; Lens PN
    Water Res; 2008 Apr; 42(8-9):2184-94. PubMed ID: 18177686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desulfurization: Critical step towards enhanced selenium removal from industrial effluents.
    Staicu LC; Morin-Crini N; Crini G
    Chemosphere; 2017 Apr; 172():111-119. PubMed ID: 28063313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of arsenate and molybdate on removal of selenate from an aqueous solution by zero-valent iron.
    Zhang Y; Amrhein C; Frankenberger WT
    Sci Total Environ; 2005 Nov; 350(1-3):1-11. PubMed ID: 16227069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study on the immobilization of selenium oxyanions by H2/Pd(s) in aqueous solution: confirmation of the one-electron reduction barrier of selenate.
    Puranen A; Jansson M; Jonsson M
    J Contam Hydrol; 2010 Jul; 116(1-4):16-23. PubMed ID: 20537758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of selenate from sulfate-containing media by sulfate-reducing bacterial biofilms.
    Hockin S; Gadd GM
    Environ Microbiol; 2006 May; 8(5):816-26. PubMed ID: 16623739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of fluoride from aqueous solution by electrodialysis: effect of process parameters and other ionic species.
    Kabay N; Arar O; Samatya S; Yüksel U; Yüksel M
    J Hazard Mater; 2008 May; 153(1-2):107-13. PubMed ID: 17889999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides.
    Di Natale F; Erto A; Lancia A; Musmarra D
    J Hazard Mater; 2011 Sep; 192(3):1842-50. PubMed ID: 21803490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary effects of anion exchange on chloride, sulfate, and lead release: systems approach to corrosion control.
    Willison H; Boyer TH
    Water Res; 2012 May; 46(7):2385-94. PubMed ID: 22374301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of selenate in methanogenic anaerobic granular sludge.
    Astratinei V; van Hullebusch E; Lens P
    J Environ Qual; 2006; 35(5):1873-83. PubMed ID: 16973629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory-scale continuous reactor for soluble selenium removal using selenate-reducing bacterium, Bacillus sp. SF-1.
    Fujita M; Ike M; Kashiwa M; Hashimoto R; Soda S
    Biotechnol Bioeng; 2002 Dec; 80(7):755-61. PubMed ID: 12402321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silage supports sulfate reduction in the treatment of metals- and sulfate-containing waste waters.
    Wakeman KD; Erving L; Riekkola-Vanhanen ML; Puhakka JA
    Water Res; 2010 Sep; 44(17):4932-9. PubMed ID: 20708212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation.
    Deng S; Zhou Q; Yu G; Huang J; Fan Q
    Water Res; 2011 Feb; 45(4):1774-80. PubMed ID: 21163511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon.
    El-Sikaily A; El Nemr A; Khaled A; Abdelwehab O
    J Hazard Mater; 2007 Sep; 148(1-2):216-28. PubMed ID: 17360109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.
    Rivera-Utrilla J; Prados-Joya G; Sánchez-Polo M; Ferro-García MA; Bautista-Toledo I
    J Hazard Mater; 2009 Oct; 170(1):298-305. PubMed ID: 19464791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk.
    Li K; Zheng Z; Feng J; Zhang J; Luo X; Zhao G; Huang X
    J Hazard Mater; 2009 Jul; 166(2-3):1180-5. PubMed ID: 19157698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of lead from aqueous effluents by adsorption on coconut shell carbon.
    Sekhar MC
    J Environ Sci Eng; 2008 Apr; 50(2):137-40. PubMed ID: 19295098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.