These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 16342932)

  • 21. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction.
    Aktas DF; Cook PF
    Biochemistry; 2008 Feb; 47(8):2539-46. PubMed ID: 18215074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structures of dialkylglycine decarboxylase inhibitor complexes.
    Malashkevich VN; Strop P; Keller JW; Jansonius JN; Toney MD
    J Mol Biol; 1999 Nov; 294(1):193-200. PubMed ID: 10556038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic studies on phosphopantothenoylcysteine decarboxylase: trapping of an enethiolate intermediate with a mechanism-based inactivating agent.
    Strauss E; Zhai H; Brand LA; McLafferty FW; Begley TP
    Biochemistry; 2004 Dec; 43(49):15520-33. PubMed ID: 15581364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fern L-methionine decarboxylase: kinetics and mechanism of decarboxylation and abortive transamination.
    Akhtar M; Stevenson DE; Gani D
    Biochemistry; 1990 Aug; 29(33):7648-60. PubMed ID: 2271524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the functional contributions of invariant serine residues in yeast mevalonate diphosphate decarboxylase.
    Krepkiy DV; Miziorko HM
    Biochemistry; 2005 Feb; 44(7):2671-7. PubMed ID: 15709780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystallographic snapshots of oxalyl-CoA decarboxylase give insights into catalysis by nonoxidative ThDP-dependent decarboxylases.
    Berthold CL; Toyota CG; Moussatche P; Wood MD; Leeper F; Richards NG; Lindqvist Y
    Structure; 2007 Jul; 15(7):853-61. PubMed ID: 17637344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altering the reaction specificity of eukaryotic ornithine decarboxylase.
    Jackson LK; Brooks HB; Osterman AL; Goldsmith EJ; Phillips MA
    Biochemistry; 2000 Sep; 39(37):11247-57. PubMed ID: 10985770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering the substrate binding site of benzoylformate decarboxylase.
    Yep A; McLeish MJ
    Biochemistry; 2009 Sep; 48(35):8387-95. PubMed ID: 19621900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced transaminase activity of a bifunctional L-aspartate 4-decarboxylase.
    Wang NC; Lee CY
    Biochem Biophys Res Commun; 2007 May; 356(2):368-73. PubMed ID: 17353007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the S128, H186, and N187 triad in substrate binding and decarboxylation in the sheep liver 6-phosphogluconate dehydrogenase reaction.
    Li L; Zhang L; Cook PF
    Biochemistry; 2006 Oct; 45(42):12680-6. PubMed ID: 17042485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigations on the pyruvate decarboxylase catalysed oxidative decarboxylation of 2-oxoacids by 2.6-dichlorophenolindophenol.
    Hübner G; Atanassova M; Schellenberger A
    Biomed Biochim Acta; 1986; 45(7):823-32. PubMed ID: 3539109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Density functional models of the mechanism for decarboxylation in orotidine decarboxylase.
    Lundberg M; Blomberg MR; Siegbahn PE
    J Mol Model; 2002 Apr; 8(4):119-30. PubMed ID: 12111391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon-13 isotope effect studies of Trypanosoma brucei ornithine decarboxylase.
    Swanson T; Brooks HB; Osterman AL; O'Leary MH; Phillips MA
    Biochemistry; 1998 Oct; 37(42):14943-7. PubMed ID: 9778371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein-enhanced decarboxylation of the covalent intermediate in benzoylformate decarboxylase--Desolvation or acid catalysis?
    Kluger R; Yu D
    Bioorg Chem; 2006 Dec; 34(6):337-44. PubMed ID: 16996103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase: insight into the active site and catalytic mechanism of a novel decarboxylation reaction.
    Martynowski D; Eyobo Y; Li T; Yang K; Liu A; Zhang H
    Biochemistry; 2006 Sep; 45(35):10412-21. PubMed ID: 16939194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lysine-69 plays a key role in catalysis by ornithine decarboxylase through acceleration of the Schiff base formation, decarboxylation, and product release steps.
    Osterman AL; Brooks HB; Jackson L; Abbott JJ; Phillips MA
    Biochemistry; 1999 Sep; 38(36):11814-26. PubMed ID: 10512638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The roles of Tyr(91) and Lys(162) in general acid-base catalysis in the pigeon NADP+-dependent malic enzyme.
    Kuo CC; Lin KY; Hsu YJ; Lin SY; Lin YT; Chang GG; Chou WY
    Biochem J; 2008 May; 411(3):467-73. PubMed ID: 18248329
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active-site mobility revealed by the crystal structure of arylmalonate decarboxylase from Bordetella bronchiseptica.
    Kuettner EB; Keim A; Kircher M; Rosmus S; Sträter N
    J Mol Biol; 2008 Mar; 377(2):386-94. PubMed ID: 18258259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inversion of enantioselectivity of asymmetric biocatalytic decarboxylation by site-directed mutagenesis based on the reaction mechanism.
    Ijima Y; Matoishi K; Terao Y; Doi N; Yanagawa H; Ohta H
    Chem Commun (Camb); 2005 Feb; (7):877-9. PubMed ID: 15700067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J; Khandogin J; West AH; Cook PF
    Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.