BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1011 related articles for article (PubMed ID: 16342966)

  • 1. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms.
    Silva RG; de Carvalho LP; Blanchard JS; Santos DS; Basso LA
    Biochemistry; 2006 Oct; 45(43):13064-73. PubMed ID: 17059223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium tuberculosis beta-ketoacyl-ACP reductase: alpha-secondary kinetic isotope effects and kinetic and equilibrium mechanisms of substrate binding.
    Silva RG; Rosado LA; Santos DS; Basso LA
    Arch Biochem Biophys; 2008 Mar; 471(1):1-10. PubMed ID: 18155153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and chemical mechanisms of the sheep liver 6-phosphogluconate dehydrogenase.
    Price NE; Cook PF
    Arch Biochem Biophys; 1996 Dec; 336(2):215-23. PubMed ID: 8954568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis.
    Fonseca IO; Silva RG; Fernandes CL; de Souza ON; Basso LA; Santos DS
    Arch Biochem Biophys; 2007 Jan; 457(2):123-33. PubMed ID: 17178095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic isotope effects as a probe of the beta-elimination reaction catalyzed by O-acetylserine sulfhydrylase.
    Hwang CC; Woehl EU; Minter DE; Dunn MF; Cook PF
    Biochemistry; 1996 May; 35(20):6358-65. PubMed ID: 8639581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase.
    Argyrou A; Blanchard JS
    Biochemistry; 2004 Apr; 43(14):4375-84. PubMed ID: 15065882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the key residues in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase responsible for interactions with Plasmodium falciparum acyl carrier protein.
    Karmodiya K; Modak R; Sahoo N; Sajad S; Surolia N
    FEBS J; 2008 Oct; 275(19):4756-66. PubMed ID: 18721141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucan lyase.
    Lee SS; Yu S; Withers SG
    Biochemistry; 2003 Nov; 42(44):13081-90. PubMed ID: 14596624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation.
    Martinelli LK; Ducati RG; Rosado LA; Breda A; Selbach BP; Santos DS; Basso LA
    Mol Biosyst; 2011 Apr; 7(4):1289-305. PubMed ID: 21298178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple hydrogen kinetic isotope effects for enzymes catalyzing exchange with solvent: application to alanine racemase.
    Spies MA; Toney MD
    Biochemistry; 2003 May; 42(17):5099-107. PubMed ID: 12718553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of hamster arylamine N-acetyltransferase 2.
    Wang H; Liu L; Hanna PE; Wagner CR
    Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of ionizable residues in the catalytic mechanism of tryptophan synthase from Salmonella typhimurium.
    Raboni S; Mozzarelli A; Cook PF
    Biochemistry; 2007 Nov; 46(45):13223-34. PubMed ID: 17927213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.