These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16342975)

  • 1. Gold nanoparticle-cytochrome C complexes: the effect of nanoparticle ligand charge on protein structure.
    Aubin-Tam ME; Hamad-Schifferli K
    Langmuir; 2005 Dec; 21(26):12080-4. PubMed ID: 16342975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c superstructure biocomposite nucleated by gold nanoparticle: thermal stability and voltammetric behavior.
    Jiang X; Shang L; Wang Y; Dong S
    Biomacromolecules; 2005; 6(6):3030-6. PubMed ID: 16283723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: probing by circular dichroism, UV-visible, and infrared spectroscopy.
    Jiang X; Jiang J; Jin Y; Wang E; Dong S
    Biomacromolecules; 2005; 6(1):46-53. PubMed ID: 15638503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facial control of nanoparticle binding to cytochrome C.
    Bayraktar H; You CC; Rotello VM; Knapp MJ
    J Am Chem Soc; 2007 Mar; 129(10):2732-3. PubMed ID: 17309259
    [No Abstract]   [Full Text] [Related]  

  • 5. Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: homocysteine and cysteine.
    Stobiecka M; Deeb J; Hepel M
    Biophys Chem; 2010 Feb; 146(2-3):98-107. PubMed ID: 19944518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome C on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity.
    Shang W; Nuffer JH; Muñiz-Papandrea VA; Colón W; Siegel RW; Dordick JS
    Small; 2009 Apr; 5(4):470-6. PubMed ID: 19189325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction.
    Komarov PV; Zherenkova LV; Khalatur PG
    J Chem Phys; 2008 Mar; 128(12):124909. PubMed ID: 18376975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching the direction of plasmon-induced photocurrents by cytochrome c at Au-TiO(2) nanocomposites.
    Zhu A; Luo Y; Tian Y
    Chem Commun (Camb); 2009 Nov; (42):6448-50. PubMed ID: 19841805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monolayer-protected nanoparticle film assemblies as platforms for controlling interfacial and adsorption properties in protein monolayer electrochemistry.
    Loftus AF; Reighard KP; Kapourales SA; Leopold MC
    J Am Chem Soc; 2008 Feb; 130(5):1649-61. PubMed ID: 18189391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed-valence interactions in triarylamine-gold-nanoparticle conjugates.
    Müller CI; Lambert C; Steeger M; Forster F; Wiessner M; Schöll A; Reinert F; Kamp M
    Chem Commun (Camb); 2009 Nov; (41):6213-5. PubMed ID: 19826672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural control of peptide-coated gold nanoparticle assemblies by the conformational transition of surface peptides.
    Higuchi M; Ushiba K; Kawaguchi M
    J Colloid Interface Sci; 2007 Apr; 308(2):356-63. PubMed ID: 17270198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoparticle self-similar chain structure organized by DNA origami.
    Ding B; Deng Z; Yan H; Cabrini S; Zuckermann RN; Bokor J
    J Am Chem Soc; 2010 Mar; 132(10):3248-9. PubMed ID: 20163139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed nanoparticle labeling of cytochrome c.
    Aubin-Tam ME; Hwang W; Hamad-Schifferli K
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4095-100. PubMed ID: 19251670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition and modulation of cytochrome c's redox properties using an amphiphilic homopolymer.
    Sandanaraj BS; Bayraktar H; Krishnamoorthy K; Knapp MJ; Thayumanavan S
    Langmuir; 2007 Mar; 23(7):3891-7. PubMed ID: 17315896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosystem I/molecular wire/metal nanoparticle bioconjugates for the photocatalytic production of H2.
    Grimme RA; Lubner CE; Bryant DA; Golbeck JH
    J Am Chem Soc; 2008 May; 130(20):6308-9. PubMed ID: 18439011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and L-cysteine film on an Au electrode.
    Zhang L; Yuan R; Chai Y; Li X
    Anal Chim Acta; 2007 Jul; 596(1):99-105. PubMed ID: 17616246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold-ligand interaction studies of water-soluble aminoalcohol capped gold nanoparticles by NMR.
    Porta F; Krpetić Z; Prati L; Gaiassi A; Scarì G
    Langmuir; 2008 Jul; 24(14):7061-4. PubMed ID: 18549254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding induced assembly of polypeptide decorated gold nanoparticles.
    Aili D; Enander K; Rydberg J; Nesterenko I; Björefors F; Baltzer L; Liedberg B
    J Am Chem Soc; 2008 Apr; 130(17):5780-8. PubMed ID: 18380430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile in situ generation of dithiocarbamate ligands for stable gold nanoparticle-oligonucleotide conjugates.
    Sharma J; Chhabra R; Yan H; Liu Y
    Chem Commun (Camb); 2008 May; (18):2140-2. PubMed ID: 18438495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorimetric response to mercury-induced abstraction of triethylene glycol ligands from a gold nanoparticle surface.
    Hirayama T; Taki M; Kashiwagi Y; Nakamoto M; Kunishita A; Itoh S; Yamamoto Y
    Dalton Trans; 2008 Sep; (35):4705-7. PubMed ID: 18728875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.