These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16342975)

  • 41. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers.
    de Groot MT; Evers TH; Merkx M; Koper MT
    Langmuir; 2007 Jan; 23(2):729-36. PubMed ID: 17209627
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytochrome C stabilization and immobilization in aerogels.
    Harper-Leatherman AS; Wallace JM; Rolison DR
    Methods Mol Biol; 2011; 679():193-205. PubMed ID: 20865398
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Well-defined nanoassemblies using gold nanoparticles bearing specific number of DNA strands.
    Qin WJ; Yung LY
    Bioconjug Chem; 2008 Jan; 19(1):385-90. PubMed ID: 18062658
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzymatic ligation creates discrete multinanoparticle building blocks for self-assembly.
    Claridge SA; Mastroianni AJ; Au YB; Liang HW; Micheel CM; Fréchet JM; Alivisatos AP
    J Am Chem Soc; 2008 Jul; 130(29):9598-605. PubMed ID: 18588300
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytochrome c and organic molecules: solution structure of the p-aminophenol adduct.
    Assfalg M; Bertini I; Del Conte R; Giachetti A; Turano P
    Biochemistry; 2007 May; 46(21):6232-8. PubMed ID: 17488096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversible increase in the redox potential of cytochrome c in methanol.
    Crilly S; Magner E
    Chem Commun (Camb); 2009 Feb; (5):535-7. PubMed ID: 19283282
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ferricytochrome c encapsulated in silica nanoparticles: structural stability and functional properties.
    Fiandaca G; Vitrano E; Cupane A
    Biopolymers; 2004 May-Jun 5; 74(1-2):55-9. PubMed ID: 15137094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Robust ligand shells for biological applications of gold nanoparticles.
    Duchesne L; Gentili D; Comes-Franchini M; Fernig DG
    Langmuir; 2008 Dec; 24(23):13572-80. PubMed ID: 18991409
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange.
    Wijaya A; Hamad-Schifferli K
    Langmuir; 2008 Sep; 24(18):9966-9. PubMed ID: 18717601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap.
    Ranganathan S; Guo R; Murray RW
    Langmuir; 2007 Jun; 23(13):7372-7. PubMed ID: 17508765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Gold nanoparticle-based monitoring of the reduction of oxidized to reduced glutathione.
    He X; Zhong Z; Guo Y; Lv J; Xu J; Zhu M; Li Y; Liu H; Wang S; Zhu Y; Zhu D
    Langmuir; 2007 Aug; 23(17):8815-9. PubMed ID: 17637013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Water-soluble amphiphilic gold nanoparticles with structured ligand shells.
    Uzun O; Hu Y; Verma A; Chen S; Centrone A; Stellacci F
    Chem Commun (Camb); 2008 Jan; (2):196-8. PubMed ID: 18092085
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure of a trypanosomatid mitochondrial cytochrome c with heme attached via only one thioether bond and implications for the substrate recognition requirements of heme lyase.
    Fülöp V; Sam KA; Ferguson SJ; Ginger ML; Allen JW
    FEBS J; 2009 May; 276(10):2822-32. PubMed ID: 19459937
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stimuli induced structural changes of gold nanoparticle assemblies having sequential alternating amphiphilic peptides at the surface.
    Higuchi M; Nagata K; Abiko S; Tanaka M; Kinoshita T
    Langmuir; 2008 Dec; 24(23):13359-63. PubMed ID: 18989942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional gold nanoparticle-peptide complexes as cell-targeting agents.
    Sun L; Liu D; Wang Z
    Langmuir; 2008 Sep; 24(18):10293-7. PubMed ID: 18715022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assembly of myoglobin layer-by-layer films with poly(propyleneimine) dendrimer-stabilized gold nanoparticles and its application in electrochemical biosensing.
    Zhang H; Hu N
    Biosens Bioelectron; 2007 Oct; 23(3):393-9. PubMed ID: 17561388
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Charge dependence of ligand release and monolayer stability of gold nanoparticles by biogenic thiols.
    Chompoosor A; Han G; Rotello VM
    Bioconjug Chem; 2008 Jul; 19(7):1342-5. PubMed ID: 18553895
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue.
    Eck W; Craig G; Sigdel A; Ritter G; Old LJ; Tang L; Brennan MF; Allen PJ; Mason MD
    ACS Nano; 2008 Nov; 2(11):2263-72. PubMed ID: 19206392
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing the protein orientation on charged self-assembled monolayers on gold nanohole arrays by SERS.
    Yu Q; Golden G
    Langmuir; 2007 Aug; 23(17):8659-62. PubMed ID: 17629308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.