These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16342981)

  • 1. Micelle-to-vesicle transition of an iron-chelating microbial surfactant, marinobactin E.
    Owen T; Pynn R; Martinez JS; Butler A
    Langmuir; 2005 Dec; 21(26):12109-14. PubMed ID: 16342981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-dependent self-assembly of a microbial surfactant.
    Owen T; Pynn R; Hammouda B; Butler A
    Langmuir; 2007 Aug; 23(18):9393-400. PubMed ID: 17655261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. XAS study of a metal-induced phase transition by a microbial surfactant.
    Owen T; Webb SM; Butler A
    Langmuir; 2008 May; 24(9):4999-5002. PubMed ID: 18442226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicles to concentrate iron in low-iron media: an attempt to mimic marine siderophores.
    Bednarova L; Brandel J; d'Hardemare Adu M; Bednar J; Serratrice G; Pierre JL
    Chemistry; 2008; 14(12):3680-6. PubMed ID: 18293349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning.
    Martinez JS; Butler A
    J Inorg Biochem; 2007 Nov; 101(11-12):1692-8. PubMed ID: 17868890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferric stability constants of representative marine siderophores: marinobactins, aquachelins, and petrobactin.
    Zhang G; Amin SA; Küpper FC; Holt PD; Carrano CJ; Butler A
    Inorg Chem; 2009 Dec; 48(23):11466-73. PubMed ID: 19902959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micelle-vesicle transition of oleyldimethylamine oxide in water.
    Miyahara M; Kawasaki H; Garamus VM; Nemoto N; Kakehashi R; Tanaka S; Annaka M; Maeda H
    Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):131-8. PubMed ID: 15542314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micelles by self-assembling peptide-conjugate amphiphile: synthesis and structural characterization.
    Accardo A; Tesauro D; Del Pozzo L; Mangiapia G; Paduano L; Morelli G
    J Pept Sci; 2008 Aug; 14(8):903-10. PubMed ID: 18320561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the structure of SDS micelles by substituted anilinium ions.
    Garg G; Hassan PA; Aswal VK; Kulshreshtha SK
    J Phys Chem B; 2005 Feb; 109(4):1340-6. PubMed ID: 16851101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micelle-to-vesicle transition induced by organic additives in catanionic surfactant systems.
    Yin H; Lei S; Zhu S; Huang J; Ye J
    Chemistry; 2006 Mar; 12(10):2825-35. PubMed ID: 16416498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unusual vesicle-micelle transitions in a salt-free catanionic surfactant: temperature and concentration effects.
    Silva BF; Marques EF; Olsson U
    Langmuir; 2008 Oct; 24(19):10746-54. PubMed ID: 18767825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel trihydroxamate-containing peptides: design, synthesis, and metal coordination.
    Ye Y; Liu M; Kao JL; Marshall GR
    Biopolymers; 2006; 84(5):472-89. PubMed ID: 16705688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamellar to micelle transition of nonionic surfactant assemblies induced by addition of colloidal particles.
    Suganuma Y; Urakami N; Mawatari R; Komura S; Nakaya-Yaegashi K; Imai M
    J Chem Phys; 2008 Oct; 129(13):134903. PubMed ID: 19045123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from vesicles to small nanometer scaled vesicles, arising from the manipulation of curvature in dialkyl chain cationic/nonionic surfactant mixed aggregates by the addition of straight chain alkanols.
    Tucker I; Penfold J; Thomas RK; Bradbury R; Grillo I
    Langmuir; 2009 May; 25(9):4934-44. PubMed ID: 19256459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A calorimetry and light scattering study of the formation and shape transition of mixed micelles of EO20PO68EO20 triblock copolymer (P123) and nonionic surfactant (C12EO6).
    Löf D; Niemiec A; Schillén K; Loh W; Olofsson G
    J Phys Chem B; 2007 May; 111(21):5911-20. PubMed ID: 17488116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the headgroup structure on the aggregation behavior and stability of self-assemblies of sodium N-[4-(n-dodecyloxy)benzoyl]-l-aminoacidates in water.
    Mohanty A; Dey J
    Langmuir; 2007 Jan; 23(3):1033-40. PubMed ID: 17241010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of nonionic mixed micelles formed by C12EO6 surfactant and P123 triblock copolymer.
    Löf D; Tomsic M; Glatter O; Fritz-Popovski G; Schillén K
    J Phys Chem B; 2009 Apr; 113(16):5478-86. PubMed ID: 19368410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional confinement-related size changes to mixed-surfactant vesicles.
    Jha AK; Lee J; Tripathi A; Bose A
    Langmuir; 2008 Jun; 24(12):6013-7. PubMed ID: 18481879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-angle X-ray scattering (SAXS) study on nonionic fluorinated micelles in aqueous system.
    Shrestha LK; Sharma SC; Sato T; Glatter O; Aramaki K
    J Colloid Interface Sci; 2007 Dec; 316(2):815-24. PubMed ID: 17765914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphere-to-rod transition of non-surface-active amphiphilic diblock copolymer micelles: a small-angle neutron scattering study.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2007 Aug; 23(18):9162-9. PubMed ID: 17676775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.