These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1335 related articles for article (PubMed ID: 16343535)

  • 1. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and characterization of RNase H3 from Aquifex aeolicus.
    Jongruja N; You DJ; Angkawidjaja C; Kanaya E; Koga Y; Kanaya S
    FEBS J; 2012 Aug; 279(15):2737-53. PubMed ID: 22686566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the termini of RNase Hs from Chlamydophila pneumoniae on enzymatic biochemical characterization.
    Hou J; Lu Z; Guo X; Liu J
    Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):831-7. PubMed ID: 22908176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the substrate binding site in the N-terminal TBP-like domain of RNase H3.
    Miyashita S; Tadokoro T; Angkawidjaja C; You DJ; Koga Y; Takano K; Kanaya S
    FEBS Lett; 2011 Jul; 585(14):2313-7. PubMed ID: 21664908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene cloning and biochemical characterizations of thermostable ribonuclease HIII from Bacillus stearothermophilus.
    Chon H; Nakano R; Ohtani N; Haruki M; Takano K; Morikawa M; Kanaya S
    Biosci Biotechnol Biochem; 2004 Oct; 68(10):2138-47. PubMed ID: 15502360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families.
    Ohtani N; Haruki M; Morikawa M; Crouch RJ; Itaya M; Kanaya S
    Biochemistry; 1999 Jan; 38(2):605-18. PubMed ID: 9888800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography.
    Tsunaka Y; Takano K; Matsumura H; Yamagata Y; Kanaya S
    J Mol Biol; 2005 Feb; 345(5):1171-83. PubMed ID: 15644213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The N-terminal hybrid binding domain of RNase HI from Thermotoga maritima is important for substrate binding and Mg2+-dependent activity.
    Jongruja N; You DJ; Kanaya E; Koga Y; Takano K; Kanaya S
    FEBS J; 2010 Nov; 277(21):4474-89. PubMed ID: 20875084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical characterization and functional complementation of ribonuclease HII and ribonuclease HIII from Chlamydophila pneumoniae AR39.
    Liang R; Liu X; Pei D; Liu J
    Microbiology (Reading); 2007 Mar; 153(Pt 3):787-793. PubMed ID: 17322199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy.
    Hoffman DW; Cameron CS; Davies C; White SW; Ramakrishnan V
    J Mol Biol; 1996 Dec; 264(5):1058-71. PubMed ID: 9000630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of type 1 ribonuclease H from hyperthermophilic archaeon Sulfolobus tokodaii: role of arginine 118 and C-terminal anchoring.
    You DJ; Chon H; Koga Y; Takano K; Kanaya S
    Biochemistry; 2007 Oct; 46(41):11494-503. PubMed ID: 17892305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9.
    Sato S; Xiang S; Raleigh DP
    J Mol Biol; 2001 Sep; 312(3):569-77. PubMed ID: 11563917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
    Kitamura S; Fujishima K; Sato A; Tsuchiya D; Tomita M; Kanai A
    Biochem J; 2010 Feb; 426(3):337-44. PubMed ID: 20047562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of N-terminal extension of Bacillus stearothermophilus RNase H2 and C-terminal extension of Thermotoga maritima RNase H2.
    Permanasari ED; Angkawidjaja C; Koga Y; Kanaya S
    FEBS J; 2013 Oct; 280(20):5065-79. PubMed ID: 23937561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The three-dimensional structure and X-ray sequence reveal that trichomaglin is a novel S-like ribonuclease.
    Gan JH; Yu L; Wu J; Xu H; Choudhary JS; Blackstock WP; Liu WY; Xia ZX
    Structure; 2004 Jun; 12(6):1015-25. PubMed ID: 15274921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate Specificity for Bacterial RNases HII and HIII Is Influenced by Metal Availability.
    Randall JR; Hirst WG; Simmons LA
    J Bacteriol; 2018 Feb; 200(4):. PubMed ID: 29084857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues.
    BrĂ¼x C; Ben-David A; Shallom-Shezifi D; Leon M; Niefind K; Shoham G; Shoham Y; Schomburg D
    J Mol Biol; 2006 May; 359(1):97-109. PubMed ID: 16631196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 67.