These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16343583)

  • 1. Optimization of phosphate removal in anodizing aluminium wastewater.
    Chimenos JM; Fernández AI; Hernández A; Haurie L; Espiell F; Ayora C
    Water Res; 2006 Jan; 40(1):137-43. PubMed ID: 16343583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-containing by-product.
    Chimenos JM; Fernández AI; Villalba G; Segarra M; Urruticoechea A; Artaza B; Espiell F
    Water Res; 2003 Apr; 37(7):1601-7. PubMed ID: 12600388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ureolytic phosphate precipitation from anaerobic effluents.
    Desmidt E; Verstraete W; Dick J; Meesschaert BD; Carballa M
    Water Sci Technol; 2009; 59(10):1983-8. PubMed ID: 19474493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Struvite precipitation in wastewater treatment plants anaerobic digestion supernatants using a magnesium oxide by-product.
    Aguilar-Pozo VB; Chimenos JM; Elduayen-Echave B; Olaciregui-Arizmendi K; López A; Gómez J; Guembe M; García I; Ayesa E; Astals S
    Sci Total Environ; 2023 Sep; 890():164084. PubMed ID: 37207781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of sludge with the Aqua Reci process.
    Stendahl K; Jäfverström S
    Water Sci Technol; 2004; 49(10):233-40. PubMed ID: 15259960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate recovery from greenhouse wastewater.
    Yi WG; Lo KV
    J Environ Sci Health B; 2003 Jul; 38(4):501-9. PubMed ID: 12856931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reagent use efficiency with removal of nitrogen from pig slurry via struvite: A study on magnesium oxide and related by-products.
    Romero-Güiza MS; Tait S; Astals S; Del Valle-Zermeño R; Martínez M; Mata-Alvarez J; Chimenos JM
    Water Res; 2015 Nov; 84():286-94. PubMed ID: 26255126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emission reduction of aluminium anodising industry by production of Mg2+-Al3+-SO4(2-) -hydrotalcite-type compound.
    Alvarez-Ayuso E; Nugteren HW
    Chemosphere; 2006 Jan; 62(1):155-62. PubMed ID: 16325651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate removal using sludge from fuller's earth production.
    Moon YH; Kim JG; Ahn JS; Lee GH; Moon HS
    J Hazard Mater; 2007 May; 143(1-2):41-8. PubMed ID: 17030413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen recovery from pig slurry by struvite precipitation using a low-cost magnesium oxide.
    Astals S; Martínez-Martorell M; Huete-Hernández S; Aguilar-Pozo VB; Dosta J; Chimenos JM
    Sci Total Environ; 2021 May; 768():144284. PubMed ID: 33434803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation.
    Uludag-Demirer S; Othman M
    Bioresour Technol; 2009 Jul; 100(13):3236-44. PubMed ID: 19318246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of phosphate by seafood processing wasted sludge.
    Lee SM; Choi BJ; Kim KH
    Water Sci Technol; 2002; 46(9):297-302. PubMed ID: 12448481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles.
    Moussavi G; Mahmoudi M
    J Hazard Mater; 2009 Sep; 168(2-3):806-12. PubMed ID: 19303210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of coking wastewater by using manganese and magnesium ores.
    Chen T; Huang X; Pan M; Jin S; Peng S; Fallgren PH
    J Hazard Mater; 2009 Sep; 168(2-3):843-7. PubMed ID: 19297089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose.
    Park JY; Yoo YJ
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):415-29. PubMed ID: 19148639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrocatalytic decontamination of oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions.
    Li G; An T; Chen J; Sheng G; Fu J; Chen F; Zhang S; Zhao H
    J Hazard Mater; 2006 Nov; 138(2):392-400. PubMed ID: 16875777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment.
    Chen S; Sun D; Chung JS
    J Hazard Mater; 2007 Jun; 144(1-2):577-84. PubMed ID: 17141410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation.
    Shin YH; Lee HS; Lee YH; Kim J; Kim JD; Lee YW
    J Hazard Mater; 2009 Aug; 167(1-3):824-9. PubMed ID: 19231072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated seeded precipitation pre-treatment of municipal wastewater to reduce scaling.
    Sanciolo P; Zou L; Gray S; Leslie G; Stevens D
    Chemosphere; 2008 May; 72(2):243-9. PubMed ID: 18328536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of molybdenum and phosphate modified kaolin in electrochemical treatment of paper mill wastewater.
    Ma H; Wang B; Wang Y
    J Hazard Mater; 2007 Jul; 145(3):417-23. PubMed ID: 17184911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.