These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16343584)

  • 1. Formation, adsorption and separation of high molecular weight disinfection byproducts resulting from chlorination of aquatic humic substances.
    Zhang X; Minear RA
    Water Res; 2006 Jan; 40(2):221-30. PubMed ID: 16343584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of high molecular weight disinfection byproducts resulting from chlorination of aquatic humic substances.
    Zhang X; Minear RA
    Environ Sci Technol; 2002 Oct; 36(19):4033-8. PubMed ID: 12380071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of low-molecular weight DBPs and inorganic ions for characterization of high-molecular weight DBPs in drinking water.
    Zhang X; Minear RA
    Water Res; 2006 Mar; 40(5):1043-51. PubMed ID: 16490231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination.
    Zhai H; Zhang X
    Environ Sci Technol; 2011 Mar; 45(6):2194-201. PubMed ID: 21323365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A picture of polar iodinated disinfection byproducts in drinking water by (UPLC/)ESI-tqMS.
    Ding G; Zhang X
    Environ Sci Technol; 2009 Dec; 43(24):9287-93. PubMed ID: 20000522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrospray ionization-tandem mass spectrometry method for identifying chlorinated drinking water disinfection byproducts.
    Zhang X; Minear RA; Guo Y; Hwang CJ; Barrett SE; Ikeda K; Shimizu Y; Matsui S
    Water Res; 2004 Nov; 38(18):3920-30. PubMed ID: 15380982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of high molecular weight disinfection byproducts from chlorination of humic substances with/without coagulation pretreatment using UF-SEC-ESI-MS/MS.
    Zhang X; Minear RA; Barrett SE
    Environ Sci Technol; 2005 Feb; 39(4):963-72. PubMed ID: 15773467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penetration of polar brominated DBPs through the activated carbon columns during total organic bromine analysis.
    Li Y; Zhang X; Krasner SW; Shang C; Zhai H; Liu J; Yang M
    J Environ Monit; 2011 Oct; 13(10):2851-7. PubMed ID: 21860855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DBP levels in chlorinated drinking water: effect of humic substances.
    Nikolaou AD; Golfinopoulos SK; Lekkas TD; Kostopoulou MN
    Environ Monit Assess; 2004; 93(1-3):301-19. PubMed ID: 15074622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter.
    Kristiana I; Tan J; Joll CA; Heitz A; von Gunten U; Charrois JW
    Water Res; 2013 Feb; 47(2):535-46. PubMed ID: 23164216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disinfection byproduct reactivity of aquatic humic substances derived from soils.
    Chow AT
    Water Res; 2006 Apr; 40(7):1426-30. PubMed ID: 16549088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water.
    Kim HC; Yu MJ
    J Hazard Mater; 2007 May; 143(1-2):486-93. PubMed ID: 17092645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization, DBPs formation, and mutagenicity of different organic matter fractions in two source waters.
    Fan Z; Gong S; Xu X; Zhang X; Zhang Y; Yu X
    Int J Hyg Environ Health; 2014 Mar; 217(2-3):300-6. PubMed ID: 23896129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of algal organic matter and formation of DBPs from chlor(am)ination.
    Fang J; Yang X; Ma J; Shang C; Zhao Q
    Water Res; 2010 Dec; 44(20):5897-906. PubMed ID: 20797758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the trihalomethane formation potential of aquatic fulvic and humic acids fractionated using thin-layer chromatography.
    Eish MY; Wells MJ
    J Chromatogr A; 2006 May; 1116(1-2):272-6. PubMed ID: 16620862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of C-, N-DBPs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation.
    Zhou S; Zhu S; Shao Y; Gao N
    Water Res; 2015 Apr; 72():381-90. PubMed ID: 25479708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of humic substances in the Kuji River waters as determined by high-performance size exclusion chromatography with fluorescence detection.
    Nagao S; Matsunaga T; Suzuki Y; Ueno T; Amano H
    Water Res; 2003 Oct; 37(17):4159-70. PubMed ID: 12946898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.
    Abouleish MY; Wells MJ
    Sci Total Environ; 2015 Jul; 521-522():293-304. PubMed ID: 25847173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of reductive property of activated carbon on total organic halogen analysis.
    Li Y; Zhang X; Shang C
    Environ Sci Technol; 2010 Mar; 44(6):2105-11. PubMed ID: 20158207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of combined ozonation and filtration on disinfection by-product formation.
    Karnik BS; Davies SH; Baumann MJ; Masten SJ
    Water Res; 2005 Aug; 39(13):2839-50. PubMed ID: 15993463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.