BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 16343612)

  • 1. Polypyrrole doped with 2 peptide sequences from laminin.
    Stauffer WR; Cui XT
    Biomaterials; 2006 Apr; 27(11):2405-13. PubMed ID: 16343612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole.
    Zhang L; Stauffer WR; Jane EP; Sammak PJ; Cui XT
    Macromol Biosci; 2010 Dec; 10(12):1456-64. PubMed ID: 20954199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.
    George PM; Lyckman AW; LaVan DA; Hegde A; Leung Y; Avasare R; Testa C; Alexander PM; Langer R; Sur M
    Biomaterials; 2005 Jun; 26(17):3511-9. PubMed ID: 15621241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization.
    Azemi E; Stauffer WR; Gostock MS; Lagenaur CF; Cui XT
    Acta Biomater; 2008 Sep; 4(5):1208-17. PubMed ID: 18420473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes.
    Wang Z; Roberge C; Dao LH; Wan Y; Shi G; Rouabhia M; Guidoin R; Zhang Z
    J Biomed Mater Res A; 2004 Jul; 70(1):28-38. PubMed ID: 15174106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline sulfonic acid) composites.
    Liu X; Gilmore KJ; Moulton SE; Wallace GG
    J Neural Eng; 2009 Dec; 6(6):065002. PubMed ID: 19850977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.
    Zhang Z; Rouabhia M; Wang Z; Roberge C; Shi G; Roche P; Li J; Dao LH
    Artif Organs; 2007 Jan; 31(1):13-22. PubMed ID: 17209956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of the conducting polymer, polypyrrole, via affinity peptide.
    Nickels JD; Schmidt CE
    J Biomed Mater Res A; 2013 May; 101(5):1464-71. PubMed ID: 23129217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The preparation of polypyrrole surfaces in the presence of mesoporous silica nanoparticles and their biomedical applications.
    Cho Y; Borgens RB
    Nanotechnology; 2010 May; 21(20):205102. PubMed ID: 20418609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion and proliferation of cells on new polymers modified biomaterials.
    Lakard S; Herlem G; Propper A; Kastner A; Michel G; Vallès-Villarreal N; Gharbi T; Fahys B
    Bioelectrochemistry; 2004 Apr; 62(1):19-27. PubMed ID: 14990322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous and electrically conductive polypyrrole-poly(vinyl alcohol) composite and its applications as a biomaterial.
    Li Y; Neoh KG; Cen L; Kang ET
    Langmuir; 2005 Nov; 21(23):10702-9. PubMed ID: 16262340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells.
    Castano H; O'Rear EA; McFetridge PS; Sikavitsas VI
    Macromol Biosci; 2004 Aug; 4(8):785-94. PubMed ID: 15468272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New biocompatible polypyrrole-based films with good blood compatibility and high electrical conductivity.
    Mao C; Zhu A; Wu Q; Chen X; Kim J; Shen J
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):41-5. PubMed ID: 18786815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices.
    Kim DH; Abidian M; Martin DC
    J Biomed Mater Res A; 2004 Dec; 71(4):577-85. PubMed ID: 15514937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of nano-tentacle polypyrrole with pseudo-molecular template for ATP incorporation.
    Xiao Y; Che J; Li CM; Sun CQ; Chua YT; Lee VS; Luong JH
    J Biomed Mater Res A; 2007 Mar; 80(4):925-31. PubMed ID: 17072847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers.
    Cullen DK; R Patel A; Doorish JF; Smith DH; Pfister BJ
    J Neural Eng; 2008 Dec; 5(4):374-84. PubMed ID: 18827311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of biocompatibility of polypyrrole in vitro and in vivo.
    Wang X; Gu X; Yuan C; Chen S; Zhang P; Zhang T; Yao J; Chen F; Chen G
    J Biomed Mater Res A; 2004 Mar; 68(3):411-22. PubMed ID: 14762920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites.
    Meng S; Rouabhia M; Shi G; Zhang Z
    J Biomed Mater Res A; 2008 Nov; 87(2):332-44. PubMed ID: 18181107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotin-doped porous polypyrrole films for electrically controlled nanoparticle release.
    Cho Y; Borgens RB
    Langmuir; 2011 May; 27(10):6316-22. PubMed ID: 21500819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole.
    Stewart EM; Liu X; Clark GM; Kapsa RM; Wallace GG
    Acta Biomater; 2012 Jan; 8(1):194-200. PubMed ID: 21843664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.