These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
536 related articles for article (PubMed ID: 16343693)
1. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Lu Z; Nie G; Belton PS; Tang H; Zhao B Neurochem Int; 2006 Mar; 48(4):263-74. PubMed ID: 16343693 [TBL] [Abstract][Full Text] [Related]
2. Antioxidant, cytotoxic activities, and structure-activity relationship of gallic acid-based indole derivatives. Khaledi H; Alhadi AA; Yehye WA; Ali HM; Abdulla MA; Hassandarvish P Arch Pharm (Weinheim); 2011 Nov; 344(11):703-9. PubMed ID: 21953995 [TBL] [Abstract][Full Text] [Related]
3. Neuroprotective effects of phenylenediamine derivatives independent of an antioxidant pathway in neuronal HT22 cells. Satoh T; Izumi M Neurosci Lett; 2007 May; 418(1):102-5. PubMed ID: 17400379 [TBL] [Abstract][Full Text] [Related]
4. Heteroarylnitrones as drugs for neurodegenerative diseases: synthesis, neuroprotective properties, and free radical scavenger properties. Porcal W; Hernández P; González M; Ferreira A; Olea-Azar C; Cerecetto H; Castro A J Med Chem; 2008 Oct; 51(19):6150-9. PubMed ID: 18788732 [TBL] [Abstract][Full Text] [Related]
5. Two new C-glucosyl benzoic acids and flavonoids from Mallotus nanus and their antioxidant activity. Phan VK; Nguyen TM; Minh CV; Nguyen HK; Nguyen HD; Nguyen PT; Nguyen XC; Nguyen HN; Nguyen XN; Heyden YV; Quetin-Leclercq J; Kim GN; Jang HD; Kim YH Arch Pharm Res; 2010 Feb; 33(2):203-8. PubMed ID: 20195819 [TBL] [Abstract][Full Text] [Related]
6. Proton dissociation is important to understanding structure-activity relationships of gallic acid antioxidants. Ji HF; Zhang HY; Shen L Bioorg Med Chem Lett; 2006 Aug; 16(15):4095-8. PubMed ID: 16713262 [TBL] [Abstract][Full Text] [Related]
7. Structure-activity relationship of neuroprotective and reactive oxygen species scavenging activities for allium organosulfur compounds. Kim JM; Chang HJ; Kim WK; Chang N; Chun HS J Agric Food Chem; 2006 Sep; 54(18):6547-53. PubMed ID: 16939308 [TBL] [Abstract][Full Text] [Related]
8. Indolalkylamines derivatives as antioxidant and neuroprotective agents in an experimental model of Parkinson's disease. Sanz E; Romera M; Bellik L; Marco JI; Unzeta M Med Sci Monit; 2004 Dec; 10(12):BR477-84. PubMed ID: 15567979 [TBL] [Abstract][Full Text] [Related]
9. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling. Abdelwahed A; Bouhlel I; Skandrani I; Valenti K; Kadri M; Guiraud P; Steiman R; Mariotte AM; Ghedira K; Laporte F; Dijoux-Franca MG; Chekir-Ghedira L Chem Biol Interact; 2007 Jan; 165(1):1-13. PubMed ID: 17129579 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant and free radical scavenging effects of the tannins of Terminalia catappa L. Lin CC; Hsu YF; Lin TC Anticancer Res; 2001; 21(1A):237-43. PubMed ID: 11299741 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. Kraus RL; Pasieczny R; Lariosa-Willingham K; Turner MS; Jiang A; Trauger JW J Neurochem; 2005 Aug; 94(3):819-27. PubMed ID: 16033424 [TBL] [Abstract][Full Text] [Related]
12. Structure-activity relationship of C6-C3 phenylpropanoids on xanthine oxidase-inhibiting and free radical-scavenging activities. Chang YC; Lee FW; Chen CS; Huang ST; Tsai SH; Huang SH; Lin CM Free Radic Biol Med; 2007 Dec; 43(11):1541-51. PubMed ID: 17964425 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant properties and free radical-scavenging reactivity of a family of hydroxynaphthalenones and dihydroxyanthracenones. Rodríguez J; Olea-Azar C; Cavieres C; Norambuena E; Delgado-Castro T; Soto-Delgado J; Araya-Maturana R Bioorg Med Chem; 2007 Nov; 15(22):7058-65. PubMed ID: 17845855 [TBL] [Abstract][Full Text] [Related]
14. The interaction between two antioxidants, sodium ascorbate and gallic acid: radical intensity and apoptosis induction. Sakagami H; Satoh K Anticancer Res; 1996; 16(3A):1231-4. PubMed ID: 8702242 [TBL] [Abstract][Full Text] [Related]
15. Relationships between free radical scavenging and antioxidant activity in foods. Alamed J; Chaiyasit W; McClements DJ; Decker EA J Agric Food Chem; 2009 Apr; 57(7):2969-76. PubMed ID: 19265447 [TBL] [Abstract][Full Text] [Related]
16. Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells. Kang SS; Lee JY; Choi YK; Kim GS; Han BH Bioorg Med Chem Lett; 2004 May; 14(9):2261-4. PubMed ID: 15081021 [TBL] [Abstract][Full Text] [Related]
17. Conjugation of catechins with cysteine generates antioxidant compounds with enhanced neuroprotective activity. Torres JL; Lozano C; Maher P Phytochemistry; 2005 Sep; 66(17):2032-7. PubMed ID: 16153406 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Inoue M; Suzuki R; Koide T; Sakaguchi N; Ogihara Y; Yabu Y Biochem Biophys Res Commun; 1994 Oct; 204(2):898-904. PubMed ID: 7980558 [TBL] [Abstract][Full Text] [Related]
19. Antioxidant activity and free radical scavenging reactions of hydroxybenzyl alcohols. Biochemical and pulse radiolysis studies. Dhiman SB; Kamat JP; Naik DB Chem Biol Interact; 2009 Dec; 182(2-3):119-27. PubMed ID: 19665455 [TBL] [Abstract][Full Text] [Related]