BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16343787)

  • 1. Adenosine A1 receptors decrease thalamic excitation of inhibitory and excitatory neurons in the barrel cortex.
    Fontanez DE; Porter JT
    Neuroscience; 2006; 137(4):1177-84. PubMed ID: 16343787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic GABAB receptors modulate thalamic excitation of inhibitory and excitatory neurons in the mouse barrel cortex.
    Porter JT; Nieves D
    J Neurophysiol; 2004 Nov; 92(5):2762-70. PubMed ID: 15254073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group II metabotropic glutamate receptors inhibit glutamate release at thalamocortical synapses in the developing somatosensory cortex.
    Mateo Z; Porter JT
    Neuroscience; 2007 May; 146(3):1062-72. PubMed ID: 17418955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-synaptic kainate receptor-mediated facilitation of glutamate release involves PKA and Ca(2+) -calmodulin at thalamocortical synapses.
    Andrade-Talavera Y; Duque-Feria P; Sihra TS; Rodríguez-Moreno A
    J Neurochem; 2013 Sep; 126(5):565-78. PubMed ID: 23692284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenosine A1 receptor-mediated depression of corticostriatal and thalamostriatal glutamatergic synaptic potentials in vitro.
    Flagmeyer I; Haas HL; Stevens DR
    Brain Res; 1997 Dec; 778(1):178-85. PubMed ID: 9462890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental decline in modulation of glutamatergic synapses in layer IV of the barrel cortex by group II metabotropic glutamate receptors.
    Mateo Z; Porter JT
    Neuroscience; 2015 Apr; 290():41-8. PubMed ID: 25595969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine effects on inhibitory synaptic transmission and excitation-inhibition balance in the rat neocortex.
    Zhang P; Bannon NM; Ilin V; Volgushev M; Chistiakova M
    J Physiol; 2015 Feb; 593(4):825-41. PubMed ID: 25565160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The α
    Ohshima M; Itami C; Kimura F
    J Physiol; 2017 Nov; 595(22):6923-6937. PubMed ID: 28948610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased thalamocortical synaptic response and decreased layer IV innervation in GAP-43 knockout mice.
    Albright MJ; Weston MC; Inan M; Rosenmund C; Crair MC
    J Neurophysiol; 2007 Sep; 98(3):1610-25. PubMed ID: 17581849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A₁ receptors inhibit glutamate release in rat medullary dorsal horn neurons.
    Choi IS; Cho JH; Jang IS
    Neuroreport; 2011 Oct; 22(14):711-5. PubMed ID: 21878793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine Differentially Modulates Synaptic Transmission of Excitatory and Inhibitory Microcircuits in Layer 4 of Rat Barrel Cortex.
    Qi G; van Aerde K; Abel T; Feldmeyer D
    Cereb Cortex; 2017 Sep; 27(9):4411-4422. PubMed ID: 27522071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic interactions between thalamic and cortical inputs onto cortical neurons in vivo.
    Fuentealba P; Crochet S; Timofeev I; Steriade M
    J Neurophysiol; 2004 May; 91(5):1990-8. PubMed ID: 15069096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired transmission at corticothalamic excitatory inputs and intrathalamic GABAergic synapses in the ventrobasal thalamus of heterozygous BDNF knockout mice.
    Laudes T; Meis S; Munsch T; Lessmann V
    Neuroscience; 2012 Oct; 222():215-27. PubMed ID: 22796079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic adenosine A₁ receptors modulate excitatory transmission in the rat basolateral amygdala.
    Rau AR; Ariwodola OJ; Weiner JL
    Neuropharmacology; 2014 Feb; 77():465-74. PubMed ID: 24212058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.
    Guo JD; O'Flaherty BM; Rainnie DG
    Neuropharmacology; 2017 Nov; 126():224-232. PubMed ID: 28899729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of corticothalamic feedback on the output dynamics of a thalamocortical neurone model: the role of synapse location and metabotropic glutamate receptors.
    Emri Z; Antal K; Crunelli V
    Neuroscience; 2003; 117(1):229-39. PubMed ID: 12605909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic inhibition preferentially reduces in NMDA receptor-mediated component of transmission in rat midbrain dopamine neurons.
    Wu YN; Shen KZ; Johnson SW
    Br J Pharmacol; 1999 Jul; 127(6):1422-30. PubMed ID: 10455292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs.
    Lee CM; Chang WC; Chang KB; Shyu BC
    Eur J Neurosci; 2007 May; 25(9):2847-61. PubMed ID: 17561847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors.
    Wang SJ
    Synapse; 2007 Jun; 61(6):401-11. PubMed ID: 17372967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotinic control of axon excitability regulates thalamocortical transmission.
    Kawai H; Lazar R; Metherate R
    Nat Neurosci; 2007 Sep; 10(9):1168-75. PubMed ID: 17704774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.