These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16343875)

  • 41. Effects of drug solubility on the release kinetics of water soluble and insoluble drugs from HPMC based matrix formulations.
    Chakraborty S; Khandai M; Sharma A; Patra ChN; Patro VJ; Sen KK
    Acta Pharm; 2009 Sep; 59(3):313-23. PubMed ID: 19819827
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Micronized ethylcellulose used for designing a directly compressed time-controlled disintegration tablet.
    Lin SY; Lin KH; Li MJ
    J Control Release; 2001 Feb; 70(3):321-8. PubMed ID: 11182202
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Percolative drug diffusion from cylindrical matrix systems with unsealed boundaries.
    Brohede U; Valizadeh S; Strømme M; Frenning G
    J Pharm Sci; 2007 Nov; 96(11):3087-99. PubMed ID: 17721939
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modified In Vitro Release of Melatonin Loaded in Nanofibrous Electrospun Mats Incorporated Into Monolayered and Three-Layered Tablets.
    Vlachou M; Kikionis S; Siamidi A; Tragou K; Ioannou E; Roussis V; Tsotinis A
    J Pharm Sci; 2019 Feb; 108(2):970-976. PubMed ID: 30312723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasticisation of amylodextrin by moisture: consequences for drug release from tablets.
    Steendam R; Eissens AC; Frijlink HW; Lerk CF
    Int J Pharm; 2000 Aug; 204(1-2):23-33. PubMed ID: 11011982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled release of radioprotective agents from matrix tablets--effect of preparative conditions on release rates.
    Benita S; Shani J; Abdulrazik M; Samuni A
    J Pharm Pharmacol; 1984 Apr; 36(4):222-8. PubMed ID: 6144767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tablet and capsule hydrophilic matrices based on heterodisperse polysaccharides having porosity-independent in vitro release profiles.
    Kelly ML; Tobyn MJ; Staniforth JN
    Pharm Dev Technol; 2000; 5(1):59-66. PubMed ID: 10669919
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrasound transmission technique as a potential tool for physical evaluation of monolithic matrix tablets.
    Hakulinen MA; Pajander J; Leskinen J; Ketolainen J; van Veen B; Niinimäki K; Pirskanen K; Poso A; Lappalainen R
    AAPS PharmSciTech; 2008; 9(1):267-73. PubMed ID: 18446491
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Square root of time dependence of matrix formulations with low drug content.
    Fessi H; Marty JP; Puisieux F; Carstensen JT
    J Pharm Sci; 1982 Jul; 71(7):749-52. PubMed ID: 7120057
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and Evaluation of Ethyl Cellulose Based Matrix Tablets of Ibuprofen with pH Modulated Release Kinetics.
    Chandran S; Asghar LF; Mantha N
    Indian J Pharm Sci; 2008 Sep; 70(5):596-602. PubMed ID: 21394255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modelling of sustained release of water-soluble drugs from porous, hydrophobic polymers.
    Gurny R; Doelker E; Peppas NA
    Biomaterials; 1982 Jan; 3(1):27-32. PubMed ID: 7066463
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ethyl cellulose-based solid matrix system for sustaining release of naproxen.
    Sarfraz MK; Nisar-Ur-Rehman ; Ahmed S; Ashraf M; Mohsin S
    Pak J Biol Sci; 2007 Feb; 10(4):668-72. PubMed ID: 19069556
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Porous cellulose matrices containing lipophilic release modifiers--a potential oral extended-release system.
    Gren T; Nyström C
    Int J Pharm; 1999 Jul; 184(1):7-19. PubMed ID: 10425347
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The use of a hydrophobic matrix for the sustained release of a highly water soluble drug.
    Martini LG; Coles M; Gravell K; Stephenson S; Thomson CM
    Drug Dev Ind Pharm; 2000 Jan; 26(1):79-83. PubMed ID: 10677813
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants.
    Yassin S; Goodwin DJ; Anderson A; Sibik J; Ian Wilson D; Gladden LF; Axel Zeitler J
    J Pharm Sci; 2015 Oct; 104(10):3440-3450. PubMed ID: 28739040
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Pharmaceutical and biologic availability of chlorpromazine from macromolecule-containing tablets].
    Gulde C; Voigt R
    Pharmazie; 1983 Aug; 38(8):542-6. PubMed ID: 6634924
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A statistical approach for the development of an oral controlled-release matrix tablet.
    Johnson AD; Anderson VL; Peck GE
    Pharm Res; 1990 Oct; 7(10):1092-7. PubMed ID: 2281042
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Drug release from starch-acetate films.
    Tuovinen L; Peltonen S; Järvinen K
    J Control Release; 2003 Sep; 91(3):345-54. PubMed ID: 12932712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of Maltose-Induced Chemical Degradation at the Interface of Bilayer Tablets.
    Matsuzaki N; Yamamoto Y; Murayama D; Katakawa Y; Mimura H; Kimura SI; Iwao Y; Itai S
    Chem Pharm Bull (Tokyo); 2017; 65(5):478-486. PubMed ID: 28458369
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of shape factors on kinetics of drug release from matrix tablets. II. Experimental.
    Cobby J; Mayersohn M; Walker GC
    J Pharm Sci; 1974 May; 63(5):732-7. PubMed ID: 4829996
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.