These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16344477)

  • 21. Structural features of cytochrome c' folding intermediates revealed by fluorescence energy-transfer kinetics.
    Lee JC; Engman KC; Tezcan FA; Gray HB; Winkler JR
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14778-82. PubMed ID: 12407175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A polypeptide chain-refolding event occurs in the Gly82 variant of yeast iso-1-cytochrome c.
    Louie GV; Brayer GD
    J Mol Biol; 1989 Nov; 210(2):313-22. PubMed ID: 2557455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heme is not required for Aquifex aeolicus cytochrome c(555) polypeptide folding.
    Yamanaka M; Mita H; Yamamoto Y; Sambongi Y
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2022-5. PubMed ID: 19734675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.
    Goldes ME; Jeakins-Cooley ME; McClelland LJ; Mou TC; Bowler BE
    J Inorg Biochem; 2016 May; 158():62-69. PubMed ID: 26775610
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of an Ala81His mutation on the Met80 loop dynamics of iso-1-cytochrome c.
    Bandi S; Bowler BE
    Biochemistry; 2015 Mar; 54(9):1729-42. PubMed ID: 25671560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early events, kinetic intermediates and the mechanism of protein folding in cytochrome C.
    Goldbeck RA; Chen E; Kliger DS
    Int J Mol Sci; 2009 Apr; 10(4):1476-1499. PubMed ID: 19468320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding.
    Das TK; Mazumdar S; Mitra S
    Eur J Biochem; 1998 Jun; 254(3):662-70. PubMed ID: 9688280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A small fluorophore reporter of protein conformation and redox state.
    Pound GJ; Pletnev AA; Fang X; Pletneva EV
    Chem Commun (Camb); 2011 May; 47(20):5714-6. PubMed ID: 21487611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.
    Latypov RF; Cheng H; Roder NA; Zhang J; Roder H
    J Mol Biol; 2006 Mar; 357(3):1009-25. PubMed ID: 16473367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acid replacements in yeast iso-1-cytochrome c. Comparison with the phylogenetic series and the tertiary structure of related cytochromes c.
    Hampsey DM; Das G; Sherman F
    J Biol Chem; 1986 Mar; 261(7):3259-71. PubMed ID: 3005287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of protein stabilizers on the conformation of the unfolded state of cytochrome c and its early folding kinetics: investigation at single molecular resolution.
    Haldar S; Mitra S; Chattopadhyay K
    J Biol Chem; 2010 Aug; 285(33):25314-23. PubMed ID: 20538585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recombinant expression, biophysical characterization, and cardiolipin-induced changes of two Caenorhabditis elegans cytochrome c proteins.
    Vincelli AJ; Pottinger DS; Zhong F; Hanske J; Rolland SG; Conradt B; Pletneva EV
    Biochemistry; 2013 Jan; 52(4):653-66. PubMed ID: 23282202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c.
    Shafiey H; Ghourchian H; Mogharrab N
    Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural intermediates in folding of yeast iso-2 cytochrome c.
    Nall BT
    Biochemistry; 1983 Mar; 22(6):1423-9. PubMed ID: 6301548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of key residues in structure, function, and stability of cytochrome-c.
    Zaidi S; Hassan MI; Islam A; Ahmad F
    Cell Mol Life Sci; 2014 Jan; 71(2):229-55. PubMed ID: 23615770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The off-pathway status of the alkali molten globule is unrelated to heme misligation and trans-pH effects: experiments with ferrocytochrome c.
    Bhuyan AK
    Biochemistry; 2010 Sep; 49(36):7774-82. PubMed ID: 20687524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast iso-1-cytochrome c: genetic analysis of structural requirements.
    Hampsey DM; Das G; Sherman F
    FEBS Lett; 1988 Apr; 231(2):275-83. PubMed ID: 2834231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unveiling a hidden folding intermediate in c-type cytochromes by protein engineering.
    Borgia A; Bonivento D; Travaglini-Allocatelli C; Di Matteo A; Brunori M
    J Biol Chem; 2006 Apr; 281(14):9331-6. PubMed ID: 16452476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of domain-swapped oligomer of cytochrome C from its molten globule state oligomer.
    Deshpande MS; Parui PP; Kamikubo H; Yamanaka M; Nagao S; Komori H; Kataoka M; Higuchi Y; Hirota S
    Biochemistry; 2014 Jul; 53(28):4696-703. PubMed ID: 24981551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.