These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Dual mechanism of intercellular communication in HOBIT osteoblastic cells: a role for gap-junctional hemichannels. Romanello M; D'Andrea P J Bone Miner Res; 2001 Aug; 16(8):1465-76. PubMed ID: 11499869 [TBL] [Abstract][Full Text] [Related]
7. ATP release through connexin hemichannels in corneal endothelial cells. Gomes P; Srinivas SP; Van Driessche W; Vereecke J; Himpens B Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1208-18. PubMed ID: 15790881 [TBL] [Abstract][Full Text] [Related]
8. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification. Levic S; Lukashkina VA; Simões P; Lukashkin AN; Russell IJ J Neurosci; 2022 Oct; 42(42):7875-7884. PubMed ID: 36261265 [TBL] [Abstract][Full Text] [Related]
9. ATP activates P2X receptors to mediate gap junctional coupling in the cochlea. Zhu Y; Zhao HB Biochem Biophys Res Commun; 2012 Oct; 426(4):528-32. PubMed ID: 22982314 [TBL] [Abstract][Full Text] [Related]
10. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing. Zong L; Chen J; Zhu Y; Zhao HB Biochem Biophys Res Commun; 2017 Jul; 489(2):223-227. PubMed ID: 28552523 [TBL] [Abstract][Full Text] [Related]
11. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing. Chen J; Zhu Y; Liang C; Chen J; Zhao HB Sci Rep; 2015 Jun; 5():10762. PubMed ID: 26035172 [TBL] [Abstract][Full Text] [Related]
12. Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Zhao HB Eur J Neurosci; 2005 Apr; 21(7):1859-68. PubMed ID: 15869481 [TBL] [Abstract][Full Text] [Related]
13. Connexins and gap junctions in the inner ear. Forge A; Becker D; Casalotti S; Edwards J; Marziano N; Nickel R Audiol Neurootol; 2002; 7(3):141-5. PubMed ID: 12053134 [TBL] [Abstract][Full Text] [Related]
15. Connexins and gap junctions in the inner ear--it's not just about K⁺ recycling. Jagger DJ; Forge A Cell Tissue Res; 2015 Jun; 360(3):633-44. PubMed ID: 25381570 [TBL] [Abstract][Full Text] [Related]
16. Directional rectification of gap junctional voltage gating between dieters cells in the inner ear of guinea pig. Zhao HB Neurosci Lett; 2000 Dec; 296(2-3):105-8. PubMed ID: 11108992 [TBL] [Abstract][Full Text] [Related]
17. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5'-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. Housley GD; Luo L; Ryan AF J Comp Neurol; 1998 Apr; 393(4):403-14. PubMed ID: 9550147 [TBL] [Abstract][Full Text] [Related]
18. Gap junctions and connexin expression in the inner ear. Forge A; Becker D; Casalotti S; Edwards J; Evans WH; Lench N; Souter M Novartis Found Symp; 1999; 219():134-50; discussion 151-6. PubMed ID: 10207902 [TBL] [Abstract][Full Text] [Related]
19. Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. Jagger DJ; Forge A J Neurosci; 2006 Jan; 26(4):1260-8. PubMed ID: 16436613 [TBL] [Abstract][Full Text] [Related]
20. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells. Zhao HB; Liu LM; Yu N; Zhu Y; Mei L; Chen J; Liang C J Neurophysiol; 2022 Jan; 127(1):313-327. PubMed ID: 34907797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]