BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 163445)

  • 1. The phosphorylated site of calf thymus F2b histone by the cyclic AMP-dependent protein kinase.
    Farago A; Romhanyi T; Antoni F; Takats A; Fabian F
    Nature; 1975 Mar; 254(5495):88. PubMed ID: 163445
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorylated sites of calf thymus histone H2B by adenosine 3',5'-monophosphate-dependent protein kinase from silkworm.
    Hashimoto E; Takeda M; Nishizuka Y
    Biochem Biophys Res Commun; 1975 Sep; 66(2):547-55. PubMed ID: 170923
    [No Abstract]   [Full Text] [Related]  

  • 3. The site of histone H2b phosphorylated by a cyclic nucleotide independent histone kinase.
    Romhányi T; Seprödi J; Antoni F; Nikolics K; Mészáros G; Faragó A
    Biochim Biophys Acta; 1982 Feb; 701(1):57-62. PubMed ID: 6275900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylated sites of calf thymus H2B histone by adenosine 3':5'-monophosphate-dependent protein kinase from bovine cerebellum.
    Kuroda Y; Hashimoto E; Nishizuka Y
    Biochem Biophys Res Commun; 1976 Jul; 71(2):629-35. PubMed ID: 183776
    [No Abstract]   [Full Text] [Related]  

  • 5. Two types of cyclic GMP binding site associated with the cyclic AMP-dependent protein kinase from lymphocytes.
    Faragó A; Hasznos P; Antoni F; Romhányi T
    Biochim Biophys Acta; 1978 Feb; 538(3):493-504. PubMed ID: 203328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of calf thymus H1 histone by muscle glycogen phosphorylase kinase.
    Tabuchi H; Hashimoto E; Nakamura S; Yamamura H; Nishizuka Y
    J Biochem; 1981 May; 89(5):1433-7. PubMed ID: 6268616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro phosphorylation of chicken erythrocyte histone by various protein kinases: absence of phosphorylation from F1 histone.
    Tsuzuki J; Loeb J
    Exp Cell Res; 1974 Oct; 88(2):303-10. PubMed ID: 4372072
    [No Abstract]   [Full Text] [Related]  

  • 8. Differential phosphorylation of high mobility group protein hmg 14 from calf thymus and avian erythrocytes by a cyclic gmp-dependent protein kinase.
    Palvimo J; Linnala-Kankkunen A; Mäenpää PH
    Biochem Biophys Res Commun; 1983 Jan; 110(2):378-82. PubMed ID: 6301450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of cyclic adenosine monophosphate in phosphorization of histone F1 thymocytes].
    Danceva KI
    Nar Zdrav; 1973; 29(2):52-4. PubMed ID: 4366910
    [No Abstract]   [Full Text] [Related]  

  • 10. Affinity purification of newly phosphorylated protein molecules. Thiophosphorylation and recovery of histones H1, H2B, and H3 and the high mobility group protein HMG-1 using adenosine 5'-O-(3-thiotriphosphate) and cyclic AMP-dependent protein kinase.
    Sun IY; Johnson EM; Allfrey VG
    J Biol Chem; 1980 Jan; 255(2):742-7. PubMed ID: 6243285
    [No Abstract]   [Full Text] [Related]  

  • 11. Loss of lymphocyte cyclic AMP dependent protein kinase activity in malignant melanoma.
    Ortez RA; Hersh EM; Robison GA
    J Cyclic Nucleotide Res; 1978 Apr; 4(2):87-96. PubMed ID: 207755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pineal protein kinase: effect of enzymic phosphorylation on actinomycin D binding by, and template activity of, chromatin.
    Fontana JA; Lovenberg W
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):755-8. PubMed ID: 4351803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorlyation of H1 and H5 histones by cyclic AMP-dependent protein kinase reduces DNA binding.
    Fasy TM; Inoue A; Johnson EM; Allfrey VG
    Biochim Biophys Acta; 1979 Sep; 564(2):322-34. PubMed ID: 226145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA binding by cyclic adenosine 3',5'-monophosphate dependent protein kinase from calf thymus nuclei.
    Johnson EM; Hadden JW; Inoue A; Allfrey VG
    Biochemistry; 1975 Aug; 14(17):3873-84. PubMed ID: 169889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo phosphorylation of histones H1 and H5 in calf thymus and chicken erythrocyte as studied by 31P nuclear magnetic resonance spectroscopy.
    Shimidzu M; Shindo H; Takahashi K; Taniguchi S; Matsumoto U
    J Biochem; 1987 Aug; 102(2):351-8. PubMed ID: 3667574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of a cyclic AMP-independent protein kinase from calf thymus nuclei.
    Kranias EG; Jungmann RA
    Biochim Biophys Acta; 1978 Feb; 517(2):447-56. PubMed ID: 23835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assymetry in the distribution of basic amino acid residues in the moderately lysine-rich histone F2b from calf thymus.
    Hnilica LS; Kappler HA; Jordan JJ
    Experientia; 1970 Apr; 26(4):353-5. PubMed ID: 5439593
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterization of protein kinases forming acid-labile histone phosphates in Walker-256 carcinosarcoma cell nuclei.
    Smith DL; Chen CC; Bruegger BB; Holtz SL; Halpern RM; Smith RA
    Biochemistry; 1974 Aug; 13(18):3780-5. PubMed ID: 4368488
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on cyclic nucleotides in the adrenal gland. 3. Properties of cyclic AMP- and GMP-dependent protein kinases in the adrenal gland.
    Shima S; Mitsunaga M; Kawashima Y; Taguchi S; Nakao T
    Biochim Biophys Acta; 1974 Mar; 341(1):56-64. PubMed ID: 4364122
    [No Abstract]   [Full Text] [Related]  

  • 20. Occurrence of epsilon-N-Acetyllysine in calf thymus histone F2b.
    Marzluff WF; Miller DM; McCarty KS
    Arch Biochem Biophys; 1972 Oct; 152(2):472-4. PubMed ID: 4635782
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.