These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 16344970)
1. Models for dioxygen activation by the CuB site of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase. Gherman BF; Heppner DE; Tolman WB; Cramer CJ J Biol Inorg Chem; 2006 Mar; 11(2):197-205. PubMed ID: 16344970 [TBL] [Abstract][Full Text] [Related]
2. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase. Kunishita A; Ertem MZ; Okubo Y; Tano T; Sugimoto H; Ohkubo K; Fujieda N; Fukuzumi S; Cramer CJ; Itoh S Inorg Chem; 2012 Sep; 51(17):9465-80. PubMed ID: 22908844 [TBL] [Abstract][Full Text] [Related]
3. Effects of thioether substituents on the O2 reactivity of beta-diketiminate-Cu(I) complexes: probing the role of the methionine ligand in copper monooxygenases. Aboelella NW; Gherman BF; Hill LM; York JT; Holm N; Young VG; Cramer CJ; Tolman WB J Am Chem Soc; 2006 Mar; 128(10):3445-58. PubMed ID: 16522125 [TBL] [Abstract][Full Text] [Related]
4. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Spectroscopic definition of the resting sites and the putative CuIIM-OOH intermediate. Chen P; Bell J; Eipper BA; Solomon EI Biochemistry; 2004 May; 43(19):5735-47. PubMed ID: 15134448 [TBL] [Abstract][Full Text] [Related]
5. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site. Chen P; Solomon EI J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the structure and reactivity of monocopper-oxygen complexes supported by beta-diketiminate and anilido-imine ligands. Gherman BF; Tolman WB; Cramer CJ J Comput Chem; 2006 Dec; 27(16):1950-61. PubMed ID: 17019721 [TBL] [Abstract][Full Text] [Related]
7. Mononuclear copper(II)-superoxo complexes that mimic the structure and reactivity of the active centers of PHM and DbetaM. Kunishita A; Kubo M; Sugimoto H; Ogura T; Sato K; Takui T; Itoh S J Am Chem Soc; 2009 Mar; 131(8):2788-9. PubMed ID: 19209864 [TBL] [Abstract][Full Text] [Related]
8. Can an ancillary ligand lead to a thermodynamically stable end-on 1 : 1 Cu-O2 adduct supported by a beta-diketiminate ligand? Heppner DE; Gherman BF; Tolman WB; Cramer CJ Dalton Trans; 2006 Oct; (40):4773-82. PubMed ID: 17033702 [TBL] [Abstract][Full Text] [Related]
9. Evidence that dioxygen and substrate activation are tightly coupled in dopamine beta-monooxygenase. Implications for the reactive oxygen species. Evans JP; Ahn K; Klinman JP J Biol Chem; 2003 Dec; 278(50):49691-8. PubMed ID: 12966104 [TBL] [Abstract][Full Text] [Related]
12. Theoretical modelling of tripodal CuN3 and CuN4 cuprous complexes interacting with O2, CO or CH3CN. de la Lande A; Gérard H; Moliner V; Izzet G; Reinaud O; Parisel O J Biol Inorg Chem; 2006 Jul; 11(5):593-608. PubMed ID: 16791643 [TBL] [Abstract][Full Text] [Related]
14. Oxygen and hydrogen isotope effects in an active site tyrosine to phenylalanine mutant of peptidylglycine alpha-hydroxylating monooxygenase: mechanistic implications. Francisco WA; Blackburn NJ; Klinman JP Biochemistry; 2003 Feb; 42(7):1813-9. PubMed ID: 12590568 [TBL] [Abstract][Full Text] [Related]
15. H-atom abstraction reaction for organic substrates via mononuclear copper(II)-superoxo species as a model for DbetaM and PHM. Fujii T; Yamaguchi S; Hirota S; Masuda H Dalton Trans; 2008 Jan; (1):164-70. PubMed ID: 18399242 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the pathway for inter-copper electron transfer in peptidylglycine alpha-amidating monooxygenase. Francisco WA; Wille G; Smith AJ; Merkler DJ; Klinman JP J Am Chem Soc; 2004 Oct; 126(41):13168-9. PubMed ID: 15479039 [TBL] [Abstract][Full Text] [Related]
17. Coordination of peroxide to the Cu(M) center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study. Rudzka K; Moreno DM; Eipper B; Mains R; Estrin DA; Amzel LM J Biol Inorg Chem; 2013 Feb; 18(2):223-232. PubMed ID: 23247335 [TBL] [Abstract][Full Text] [Related]
18. Long distance electron-transfer mechanism in peptidylglycine alpha-hydroxylating monooxygenase: a perfect fitting for a water bridge. de la Lande A; Martí S; Parisel O; Moliner V J Am Chem Soc; 2007 Sep; 129(38):11700-7. PubMed ID: 17764178 [TBL] [Abstract][Full Text] [Related]
19. The copper-enzyme family of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. Klinman JP J Biol Chem; 2006 Feb; 281(6):3013-6. PubMed ID: 16301310 [No Abstract] [Full Text] [Related]
20. Kβ Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase. Martin-Diaconescu V; Chacón KN; Delgado-Jaime MU; Sokaras D; Weng TC; DeBeer S; Blackburn NJ Inorg Chem; 2016 Apr; 55(7):3431-9. PubMed ID: 26965786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]