BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16345093)

  • 1. Role of phase diagram of membrane formation system in controlling the crystallinity and degradation rate of PLLA membranes.
    Lee IC; Cheng LP; Young TH
    J Biomed Mater Res A; 2006 Mar; 76(4):842-50. PubMed ID: 16345093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of PLLA membranes with different morphologies for culture of MG-63 Cells.
    Liu HC; Lee IC; Wang JH; Yang SH; Young TH
    Biomaterials; 2004 Aug; 25(18):4047-56. PubMed ID: 15046895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro degradation of porous poly(L-lactic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Aug; 21(15):1595-605. PubMed ID: 10885732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): effects of biaxial orientation.
    Tsuji H; Ogiwara M; Saha SK; Sakaki T
    Biomacromolecules; 2006 Jan; 7(1):380-7. PubMed ID: 16398539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA).
    Loo SC; Ooi CP; Wee SH; Boey YC
    Biomaterials; 2005 Jun; 26(16):2827-33. PubMed ID: 15603778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of high molecular weight poly(L-lactide) in alkaline medium.
    Cam D; Hyon SH; Ikada Y
    Biomaterials; 1995 Jul; 16(11):833-43. PubMed ID: 8527598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass-based composites from poly(lactic acid) and wood flour by vapor-phase assisted surface polymerization.
    Kim D; Andou Y; Shirai Y; Nishida H
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):385-91. PubMed ID: 21186811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical characterization of thin semi-porous poly(L-lactic acid)/poly(ethylene glycol) membranes for tissue engineering.
    Swaminathan V; Tchao R; Jonnalagadda S
    J Biomater Sci Polym Ed; 2007; 18(10):1321-33. PubMed ID: 17939889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and morphology changes during in vitro degradation of electrospun poly(glycolide-co-lactide) nanofiber membrane.
    Zong X; Ran S; Kim KS; Fang D; Hsiao BS; Chu B
    Biomacromolecules; 2003; 4(2):416-23. PubMed ID: 12625740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro degradation of porous PLLA/pearl powder composite scaffolds.
    Liu YS; Huang QL; Kienzle A; Müller WE; Feng QL
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():227-34. PubMed ID: 24656373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. I. In vitro degradation.
    Leach KJ; Mathiowitz E
    Biomaterials; 1998 Nov; 19(21):1973-80. PubMed ID: 9863531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Τhe effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid.
    Georgiopoulos P; Kontou E; Meristoudi A; Pispas S; Chatzinikolaidou M
    J Biomater Appl; 2014 Nov; 29(5):662-74. PubMed ID: 25091863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers.
    Wang CH; Fan KR; Hsiue GH
    Biomaterials; 2005 Jun; 26(16):2803-11. PubMed ID: 15603776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paclitaxel-loaded poly(L-lactic acid) microspheres 3: blending low and high molecular weight polymers to control morphology and drug release.
    Liggins RT; Burt HM
    Int J Pharm; 2004 Sep; 282(1-2):61-71. PubMed ID: 15336382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37 degrees C.
    Tsuji H; Ikarashi K
    Biomaterials; 2004 Nov; 25(24):5449-55. PubMed ID: 15142725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. 3. Homocrystallized and amorphous blend films.
    Tsuji H; Del Carpio CA
    Biomacromolecules; 2003; 4(1):7-11. PubMed ID: 12523839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature on the thermal property and crystallization behavior of poly (lactic acid) porous membrane prepared via phase separation induced by water microdroplets.
    Wang H; Qiao W; Ma S; Wang L; Liu C; Zhou Y; Gu S; Xu W; Shi J; Yang H
    Int J Biol Macromol; 2020 Mar; 147():1185-1192. PubMed ID: 31747571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational molecular modeling and structural rationalization for the design of a drug-loaded PLLA/PVA biopolymeric membrane.
    Sibeko B; Pillay V; Choonara YE; Khan RA; Modi G; Iyuke SE; Naidoo D; Danckwerts MP
    Biomed Mater; 2009 Feb; 4(1):015014. PubMed ID: 19075365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H
    Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of hydrophobic coatings in biodegradable devices.
    Meng J; Li H; Gao Y; Xu H; Gu H; Chang J
    Biomed Mater Eng; 2015; 25(1):77-88. PubMed ID: 25585982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.