These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16345189)

  • 1. Microbial decomposition of synthetic C-labeled lignins in nature: lignin biodegradation in a variety of natural materials.
    Hackett WF; Connors WJ; Kirk TK; Zeikus JG
    Appl Environ Microbiol; 1977 Jan; 33(1):43-51. PubMed ID: 16345189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of microbial mineralization of lignin in anaerobic enrichment cultures.
    Odier E; Monties B
    Appl Environ Microbiol; 1983 Sep; 46(3):661-5. PubMed ID: 6639020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin decomposition is sustained under fluctuating redox conditions in humid tropical forest soils.
    Hall SJ; Silver WL; Timokhin VI; Hammel KE
    Glob Chang Biol; 2015 Jul; 21(7):2818-2828. PubMed ID: 25711691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of natural and Kraft lignins by the microflora of soil and water.
    Crawford DL; Floyd S; Pometto AL; Crawford RL
    Can J Microbiol; 1977 Apr; 23(4):434-40. PubMed ID: 861849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin lags, leads, or limits the decomposition of litter and soil organic carbon.
    Hall SJ; Huang W; Timokhin VI; Hammel KE
    Ecology; 2020 Sep; 101(9):e03113. PubMed ID: 32506475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophilic anaerobic biodegradation of [C]lignin, [C]cellulose, and [C]lignocellulose preparations.
    Benner R; Hodson RE
    Appl Environ Microbiol; 1985 Oct; 50(4):971-6. PubMed ID: 16346924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and microbial decomposition of synthetic [14C]ligins.
    Kirk TK; Connors WJ; Bleam RD; Hackett WF; Zeikus JG
    Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2515-9. PubMed ID: 1058470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora.
    Benner R; Maccubbin AE; Hodson RE
    Appl Environ Microbiol; 1984 May; 47(5):998-1004. PubMed ID: 16346554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decomposition of [C]Lignocelluloses of Spartina alterniflora and a Comparison with Field Experiments.
    Wilson JO
    Appl Environ Microbiol; 1985 Mar; 49(3):478-84. PubMed ID: 16346741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.
    Gao H; Chen X; Wei J; Zhang Y; Zhang L; Chang J; Thompson ML
    PLoS One; 2016; 11(7):e0158172. PubMed ID: 27380023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors.
    Ramalingam V; Cupples AM
    Appl Microbiol Biotechnol; 2020 May; 104(9):4155-4170. PubMed ID: 32170385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin decomposition along an Alpine elevation gradient in relation to physicochemical and soil microbial parameters.
    Duboc O; Dignac MF; Djukic I; Zehetner F; Gerzabek MH; Rumpel C
    Glob Chang Biol; 2014 Jul; 20(7):2272-85. PubMed ID: 24323640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ
    Xia S; Song Z; Li Q; Guo L; Yu C; Singh BP; Fu X; Chen C; Wang Y; Wang H
    Glob Chang Biol; 2021 Jan; 27(2):417-434. PubMed ID: 33068483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerobic and anaerobic biodegradation of phenol derivatives in various paddy soils.
    Shibata A; Inoue Y; Katayama A
    Sci Total Environ; 2006 Aug; 367(2-3):979-87. PubMed ID: 16530810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA.
    Tang YJ; Carpenter SD; Deming JW; Krieger-Brockett B
    Mar Pollut Bull; 2006 Nov; 52(11):1431-40. PubMed ID: 16780896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cupric Oxide (CuO) Oxidation Detects Pyrogenic Carbon in Burnt Organic Matter and Soils.
    Hatten J; Goñi M
    PLoS One; 2016; 11(3):e0151957. PubMed ID: 27011012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of specifically labeled C-(lignin)- and C-(cellulose)-lignocelluloses and their decomposition by the microflora of soil.
    Crawford DL; Crawford RL; Pometto AL
    Appl Environ Microbiol; 1977 Jun; 33(6):1247-51. PubMed ID: 16345246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignocellulose mineralization by arctic lake sediments in response to nutrient manipulation.
    Federle TW; Vestal JR
    Appl Environ Microbiol; 1980 Jul; 40(1):32-9. PubMed ID: 16345594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin degradation and humus formation in alluvial soils and sediments.
    Fustec E; Chauvet E; Gas G
    Appl Environ Microbiol; 1989 Apr; 55(4):922-6. PubMed ID: 16347894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaseous elemental mercury emissions and CO(2) respiration rates in terrestrial soils under controlled aerobic and anaerobic laboratory conditions.
    Obrist D; Faïn X; Berger C
    Sci Total Environ; 2010 Mar; 408(7):1691-700. PubMed ID: 20071007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.