These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16345395)

  • 1. Growth of Candida ingens on Supernatant from Anaerobically Fermented Pig Waste: Effects of Temperature and pH.
    Henry DP; Thomson RH
    Appl Environ Microbiol; 1979 Jun; 37(6):1132-6. PubMed ID: 16345395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting the survival of Salmonella and Escherichia coli in anaerobically fermented pig waste.
    Henry DP; Frost AJ; Samuel JL; O'Boyle DA; Thomson RH
    J Appl Bacteriol; 1983 Aug; 55(1):89-95. PubMed ID: 6352597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Candida ingens grown on the supernatant derived from the anaerobic fermentation of monogastric animal wastes.
    Henry DP; Thomson RH; Sizemore DJ; O'Leary JA
    Appl Environ Microbiol; 1976 Jun; 31(6):813-8. PubMed ID: 945718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candida ingens as a potential fodder protein.
    Henry DP
    Aust Vet J; 1975 Jun; 51(6):317-9. PubMed ID: 1167139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of different temperatures and pH values on volatile fatty acids production during codigestion of food waste and thermal-hydrolysed sewage sludge and subsequent volatile fatty acids for polyhydroxyalkanoates production.
    Gong X; Wu M; Jiang Y; Wang H
    Bioresour Technol; 2021 Aug; 333():125149. PubMed ID: 33901914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructure of Candida ingens: a yeast that can assimilate volatile fatty acids.
    Garrison RG; Mirikitani FK; Henry DP; Evans BJ; Arnold WN
    Microbios; 1985; 42(168):77-89. PubMed ID: 3999985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum.
    Svetlitshnyi V; Rainey F; Wiegel J
    Int J Syst Bacteriol; 1996 Oct; 46(4):1131-7. PubMed ID: 8863447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth characteristics of Candida utilis on volatile substrate in a multistage tower fermentor.
    Páca J; Grégr V
    Biotechnol Bioeng; 1977 Apr; 19(4):539-54. PubMed ID: 15674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media.
    Amézcua-Vega C; Poggi-Varaldo HM; Esparza-García F; Ríos-Leal E; Rodríguez-Vázquez R
    Bioresour Technol; 2007 Jan; 98(1):237-40. PubMed ID: 16413180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste.
    Ugwuanyi JO; Harvey LM; McNeil B
    Bioresour Technol; 2005 Apr; 96(6):707-19. PubMed ID: 15588773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors.
    Aydin S; Yesil H; Tugtas AE
    Bioresour Technol; 2018 Feb; 250():548-555. PubMed ID: 29197778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting production of mold mycelium and protein in synthetic media.
    Graham DC; Steinkraus KH; Hackler LR
    Appl Environ Microbiol; 1976 Sep; 32(3):381-7. PubMed ID: 10836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.
    Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C
    Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of organic acids from kitchen wastes.
    Loh CW; Fakhru'l-Razi A; Hassan MA; Karim MI
    Artif Cells Blood Substit Immobil Biotechnol; 1999; 27(5-6):455-9. PubMed ID: 10595448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure.
    Jiang Y; Dennehy C; Lawlor PG; Hu Z; McCabe M; Cormican P; Zhan X; Gardiner GE
    Waste Manag; 2018 Sep; 79():302-311. PubMed ID: 30343759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants in microbial colonization of the murine gastrointestinal tract: pH, temperature, and energy-yielding metabolism of Torulopsis pintolopesii.
    Artwohl JE; Savage DC
    Appl Environ Microbiol; 1979 Apr; 37(4):697-703. PubMed ID: 36846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.
    Yin J; Wang K; Yang Y; Shen D; Wang M; Mo H
    Bioresour Technol; 2014 Nov; 171():323-9. PubMed ID: 25218204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature and retention time on methane production from beef cattle waste.
    Varel VH; Hashimoto AG; Chen YR
    Appl Environ Microbiol; 1980 Aug; 40(2):217-22. PubMed ID: 16345602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of temperature on enhancement of volatile fatty acids fermentation from organic fraction of municipal solid waste: Synergism between food and paper components.
    Soomro AF; Abbasi IA; Ni Z; Ying L; Liu J
    Bioresour Technol; 2020 May; 304():122980. PubMed ID: 32062392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.