These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 16345415)
1. Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Jørgensen BB; Revsbech NP; Blackburn TH; Cohen Y Appl Environ Microbiol; 1979 Jul; 38(1):46-58. PubMed ID: 16345415 [TBL] [Abstract][Full Text] [Related]
2. Transition from Anoxygenic to Oxygenic Photosynthesis in a Microcoleus chthonoplastes Cyanobacterial Mat. Jørgensen BB; Cohen Y; Revsbech NP Appl Environ Microbiol; 1986 Feb; 51(2):408-17. PubMed ID: 16346997 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic Potential and Light-Dependent Oxygen Consumption in a Benthic Cyanobacterial Mat. Jørgensen BB; Cohen Y; Revsbech NP Appl Environ Microbiol; 1988 Jan; 54(1):176-182. PubMed ID: 16347523 [TBL] [Abstract][Full Text] [Related]
4. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. D'Amelio ED; Cohen Y; Des Marais DJ Arch Microbiol; 1987; 147():213-20. PubMed ID: 11542090 [TBL] [Abstract][Full Text] [Related]
5. Bio-optical Characteristics and the Vertical Distribution of Photosynthetic Pigments and Photosynthesis in an Artificial Cyanobacterial Mat. Kühl M; Fenchel T Microb Ecol; 2000 Aug; 40(2):94-103. PubMed ID: 11029078 [TBL] [Abstract][Full Text] [Related]
6. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-d) by a hypersaline microbial mat and related functional changes in the mat community. Grötzschel S; Köster J; de Beer D Microb Ecol; 2004 Aug; 48(2):254-62. PubMed ID: 15546044 [TBL] [Abstract][Full Text] [Related]
7. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen BB; Des Marais DJ FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103 [TBL] [Abstract][Full Text] [Related]
8. Photosynthesis in sediments determined at high spatial resolution by the use of microelectrodes. Nakamura Y; Satoh H; Okabe S; Watanabe Y Water Res; 2004 May; 38(9):2439-47. PubMed ID: 15142806 [TBL] [Abstract][Full Text] [Related]
9. Diurnal Cycles of Sulfate Reduction under Oxic Conditions in Cyanobacterial Mats. Fründ C; Cohen Y Appl Environ Microbiol; 1992 Jan; 58(1):70-7. PubMed ID: 16348641 [TBL] [Abstract][Full Text] [Related]
10. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain). Jonkers HM; Ludwig R; Wit R; Pringault O; Muyzer G; Niemann H; Finke N; Beer D FEMS Microbiol Ecol; 2003 May; 44(2):175-89. PubMed ID: 19719635 [TBL] [Abstract][Full Text] [Related]
11. Physiological ecology of cyanobacteria in microbial mats and other communities. Stal LJ New Phytol; 1995 Sep; 131(1):1-32. PubMed ID: 33863161 [TBL] [Abstract][Full Text] [Related]
12. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Wieland A; Zopfi J; Benthien M; Kühl M Microb Ecol; 2005 Jan; 49(1):34-49. PubMed ID: 15614465 [TBL] [Abstract][Full Text] [Related]
13. Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Teske A; Ramsing NB; Habicht K; Fukui M; Küver J; Jørgensen BB; Cohen Y Appl Environ Microbiol; 1998 Aug; 64(8):2943-51. PubMed ID: 9687455 [TBL] [Abstract][Full Text] [Related]
14. Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole. Kinsman-Costello LE; Sheik CS; Sheldon ND; Allen Burton G; Costello DM; Marcus D; Uyl PA; Dick GJ Geobiology; 2017 Mar; 15(2):225-239. PubMed ID: 27671809 [TBL] [Abstract][Full Text] [Related]
15. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Jorgensen BB; Des Marais DJ Limnol Oceanogr; 1988; 33(1):99-113. PubMed ID: 11539749 [TBL] [Abstract][Full Text] [Related]
16. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Canfield DE; Des Marais DJ Geochim Cosmochim Acta; 1993 Aug; 57(16):3971-84. PubMed ID: 11537735 [TBL] [Abstract][Full Text] [Related]
17. Colorless Sulfur Bacteria, Beggiatoa spp. and Thiovulum spp., in O(2) and H(2)S Microgradients. Jørgensen BB; Revsbech NP Appl Environ Microbiol; 1983 Apr; 45(4):1261-70. PubMed ID: 16346268 [TBL] [Abstract][Full Text] [Related]
18. Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). Fourçans A; de Oteyza TG; Wieland A; Solé A; Diestra E; van Bleijswijk J; Grimalt JO; Kühl M; Esteve I; Muyzer G; Caumette P; Duran R FEMS Microbiol Ecol; 2004 Dec; 51(1):55-70. PubMed ID: 16329855 [TBL] [Abstract][Full Text] [Related]
19. Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom. Pokrovsky OS; Shirokova LS Water Res; 2013 Feb; 47(2):922-32. PubMed ID: 23219386 [TBL] [Abstract][Full Text] [Related]
20. Regulation of electron transfer processes affects phototrophic mat structure and activity. Ha PT; Renslow RS; Atci E; Reardon PN; Lindemann SR; Fredrickson JK; Call DR; Beyenal H Front Microbiol; 2015; 6():909. PubMed ID: 26388853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]