These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16345607)

  • 1. Comparison of in situ and in vitro rates of methane release in freshwater sediments.
    Kelly CA; Chynoweth DP
    Appl Environ Microbiol; 1980 Aug; 40(2):287-93. PubMed ID: 16345607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Populations of methane-producing bacteria and in vitro methanogenesis in salt marsh and estuarine sediments.
    Jones WJ; Paynter MJ
    Appl Environ Microbiol; 1980 Apr; 39(4):864-71. PubMed ID: 16345550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments.
    Martinez-Cruz K; Sepulveda-Jauregui A; Casper P; Anthony KW; Smemo KA; Thalasso F
    Water Res; 2018 Nov; 144():332-340. PubMed ID: 30053624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.
    Deutzmann JS; Stief P; Brandes J; Schink B
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):18273-8. PubMed ID: 25472842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel).
    Nüsslein B; Chin KJ; Eckert W; Conrad R
    Environ Microbiol; 2001 Jul; 3(7):460-70. PubMed ID: 11553236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status.
    Yang Y; Chen J; Li B; Liu Y; Xie S
    Syst Appl Microbiol; 2018 Nov; 41(6):650-657. PubMed ID: 30170893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic metabolism of immediate methane precursors in Lake Mendota.
    Winfrey MR; Zeikus JG
    Appl Environ Microbiol; 1979 Feb; 37(2):244-53. PubMed ID: 434807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane sources in arctic thermokarst lake sediments on the North Slope of Alaska.
    Matheus Carnevali PB; Rohrssen M; Williams MR; Michaud AB; Adams H; Berisford D; Love GD; Priscu JC; Rassuchine O; Hand KP; Murray AE
    Geobiology; 2015 Mar; 13(2):181-97. PubMed ID: 25612141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments.
    Egger M; Lenstra W; Jong D; Meysman FJ; Sapart CJ; van der Veen C; Röckmann T; Gonzalez S; Slomp CP
    PLoS One; 2016; 11(8):e0161609. PubMed ID: 27560511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature limitation of methanogenesis in aquatic sediments.
    Zeikus JG; Winfrey MR
    Appl Environ Microbiol; 1976 Jan; 31(1):99-107. PubMed ID: 821396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous control of sulfide and methane in sewers achieved by a physical approach targeting dominant active zone in sediments.
    Ren D; Zuo Z; Xing Y; Ji P; Yu T; Zhu D; Liu Y; Huang X
    Water Res; 2022 Mar; 211():118010. PubMed ID: 35021123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methane production and ebullition in a shallow, artificially aerated, eutrophic temperate lake (Lake Elsinore, CA).
    Martinez D; Anderson MA
    Sci Total Environ; 2013 Jun; 454-455():457-65. PubMed ID: 23567165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature.
    Glissman K; Chin KJ; Casper P; Conrad R
    Microb Ecol; 2004 Oct; 48(3):389-99. PubMed ID: 15692859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freshwater bacteria release methane as a byproduct of phosphorus acquisition.
    Yao M; Henny C; Maresca JA
    Appl Environ Microbiol; 2016 Dec; 82(23):6994-7003. PubMed ID: 27694233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl-compounds driven benthic carbon cycling in the sulfate-reducing sediments of South China Sea.
    Xu L; Zhuang GC; Montgomery A; Liang Q; Joye SB; Wang F
    Environ Microbiol; 2021 Feb; 23(2):641-651. PubMed ID: 32506654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment.
    Montag D; Schink B
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation between sediment and hypolimnion methanogen communities in humic lakes.
    Youngblut ND; Dell'aringa M; Whitaker RJ
    Environ Microbiol; 2014 May; 16(5):1411-23. PubMed ID: 24237594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types.
    Ji Y; Angel R; Klose M; Claus P; Marotta H; Pinho L; Enrich-Prast A; Conrad R
    Environ Microbiol; 2016 Dec; 18(12):5082-5100. PubMed ID: 27507000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activities and distribution of methanogenic and methane-oxidizing microbes in marine sediments from the Cascadia Margin.
    Yoshioka H; Maruyama A; Nakamura T; Higashi Y; Fuse H; Sakata S; Bartlett DH
    Geobiology; 2010 Jun; 8(3):223-33. PubMed ID: 20059557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane distribution patterns along a transect of Lake Fuxian, a deep oligotrophic lake in China.
    Li B; Gu Q; Miao Y; Luo W; Xing P; Wu QL
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):25848-25860. PubMed ID: 31392622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.