BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16345651)

  • 1. Attack on lignified grass cell walls by a facultatively anaerobic bacterium.
    Akin DE
    Appl Environ Microbiol; 1980 Oct; 40(4):809-20. PubMed ID: 16345651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls.
    Akin DE
    Appl Environ Microbiol; 1980 Jan; 39(1):242-52. PubMed ID: 7356317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur.
    Akin DE; Gordon GL; Hogan JP
    Appl Environ Microbiol; 1983 Sep; 46(3):738-48. PubMed ID: 6639027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic investigation of changes in histology and digestibility in the rumen of a forage grass and a forage legume during the first growth stage.
    Jamot J; Grenet E
    Reprod Nutr Dev; 1991; 31(4):441-50. PubMed ID: 1747202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure of rigid and lignified forage tissue degradation by a filamentous rumen microorganism.
    Akin DE
    J Bacteriol; 1976 Mar; 125(3):1156-62. PubMed ID: 1254551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen.
    Akin DE; Rigsby LL
    Appl Environ Microbiol; 1987 Sep; 53(9):1987-95. PubMed ID: 2823705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture.
    Bootten TJ; Joblin KN; McArdle BH; Harris PJ
    J Appl Microbiol; 2011 Nov; 111(5):1086-96. PubMed ID: 21848807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial delignification with white rot fungi improves forage digestibility.
    Akin DE; Sethuraman A; Morrison WH; Martin SA; Eriksson KE
    Appl Environ Microbiol; 1993 Dec; 59(12):4274-82. PubMed ID: 16349123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus.
    Akin DE; Rigsby LL; Sethuraman A; Morrison WH; Gamble GR; Eriksson KE
    Appl Environ Microbiol; 1995 Apr; 61(4):1591-8. PubMed ID: 7747973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial degradation in the rumen of wheat straw and anhydrous ammonia treated wheat straw observed by electron microscopy.
    Grenet E; Barry P
    Reprod Nutr Dev; 1990; 30(4):533-40. PubMed ID: 2244966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of bermuda and orchard grass by species of ruminal bacteria.
    Akin DE; Rigsby LL
    Appl Environ Microbiol; 1985 Oct; 50(4):825-30. PubMed ID: 16346915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and chemical properties of grass lignocelluloses related to conversion for biofuels.
    Anderson WF; Akin DE
    J Ind Microbiol Biotechnol; 2008 May; 35(5):355-366. PubMed ID: 18188624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical degradation of lignified stem tissues by ruminal fungi.
    Akin DE; Lyon CE; Windham WR; Rigsby LL
    Appl Environ Microbiol; 1989 Mar; 55(3):611-6. PubMed ID: 16347869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of polysaccharides and lignin by ruminal bacteria and fungi.
    Akin DE; Benner R
    Appl Environ Microbiol; 1988 May; 54(5):1117-25. PubMed ID: 3389808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mode of attack on orchardgrass leaf blades by rumen protozoa.
    Akin DE; Amos HE
    Appl Environ Microbiol; 1979 Feb; 37(2):332-8. PubMed ID: 16345348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation.
    Tsai CG; Jones GA
    Can J Microbiol; 1975 Jun; 21(6):794-801. PubMed ID: 1170929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grass lignocellulose: strategies to overcome recalcitrance.
    Akin DE
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):3-15. PubMed ID: 18478372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patriciarum.
    McSweeney CS; Dulieu A; Katayama Y; Lowry JB
    Appl Environ Microbiol; 1994 Aug; 60(8):2985-9. PubMed ID: 8085834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation.
    Chateigner-Boutin AL; Ordaz-Ortiz JJ; Alvarado C; Bouchet B; Durand S; Verhertbruggen Y; Barrière Y; Saulnier L
    Front Plant Sci; 2016; 7():1476. PubMed ID: 27746801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly substituted glucuronoarabinoxylans (hsGAXs) and low-branched xylans show a distinct localization pattern in the tissues of Zea mays L.
    Suzuki K; Kitamura S; Kato Y; Itoh T
    Plant Cell Physiol; 2000 Aug; 41(8):948-59. PubMed ID: 11038055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.