These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16345678)

  • 1. Bacterial density in water determined by poisson or negative binomial distributions.
    El-Shaarawi AH; Esterby SR; Dutka BJ
    Appl Environ Microbiol; 1981 Jan; 41(1):107-16. PubMed ID: 16345678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of historical data for estimating the number of samples required for monitoring drinking water.
    el-Shaarawi AH; Block JC; Maul A
    Sci Total Environ; 1985 Apr; 42(3):289-303. PubMed ID: 4001922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparisons of statistical distributions for cluster sizes in a developing pandemic.
    Faddy MJ; Pettitt AN
    BMC Med Res Methodol; 2022 Jan; 22(1):32. PubMed ID: 35094680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Count data distributions and their zero-modified equivalents as a framework for modelling microbial data with a relatively high occurrence of zero counts.
    Gonzales-Barron U; Kerr M; Sheridan JJ; Butler F
    Int J Food Microbiol; 2010 Jan; 136(3):268-77. PubMed ID: 19913934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Poisson distribution: the property of mixture of Poisson and comparison with negative binomial distribution.
    Joe H; Zhu R
    Biom J; 2005 Apr; 47(2):219-29. PubMed ID: 16389919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the empirical distribution of prokaryotic genome n-mers in the presence of nullomers.
    Tabb LP; Zhao W; Huang J; Rosen GL
    J Comput Biol; 2014 Oct; 21(10):732-40. PubMed ID: 25075627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The Validity of the Poisson Distribution to Analyze Microbial Colony Counts on Agar Plates for Food Samples].
    Fujikawa H
    Shokuhin Eiseigaku Zasshi; 2023; 64(5):174-178. PubMed ID: 37880096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sampling to Detect Rare Species.
    Green RH; Young RC
    Ecol Appl; 1993 May; 3(2):351-356. PubMed ID: 27759323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data?
    Ver Hoef JM; Boveng PL
    Ecology; 2007 Nov; 88(11):2766-72. PubMed ID: 18051645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitting discrete probability distributions to evolutionary events.
    Uzzell T; Corbin KW
    Science; 1971 Jun; 172(3988):1089-96. PubMed ID: 5574514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhomogeneity of the density of Parascaris spp. eggs in faeces of individual foals and the use of hypothesis testing for treatment decision making.
    Wilkes EJA; Cowling A; Woodgate RG; Hughes KJ
    Vet Parasitol; 2016 Oct; 229():131-138. PubMed ID: 27809968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the dependence between number of trials and success probability in beta-binomial-Poisson mixture distributions.
    Zhu J; Eickhoff JC; Kaiser MS
    Biometrics; 2003 Dec; 59(4):955-61. PubMed ID: 14969474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Negative binomial distribution versus Poisson in the analysis of recurrent phenomena].
    Navarro A; Utzet F; Puig P; Caminal J; Martín M
    Gac Sanit; 2001; 15(5):447-52. PubMed ID: 11734158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regression to the mean for the bivariate binomial distribution.
    Khan M; Olivier J
    Stat Med; 2019 Jun; 38(13):2391-2412. PubMed ID: 30743311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confidence intervals and prediction intervals for two-parameter negative binomial distributions.
    Hasan MM; Krishnamoorthy K
    J Appl Stat; 2024; 51(12):2420-2435. PubMed ID: 39267711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate estimation for extra-Poisson variability assuming random effect models.
    de Oliveira RP; Achcar JA
    J Appl Stat; 2021; 48(16):2982-3001. PubMed ID: 35707251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of births in some African populations: an empirical test of the adequacy of the negative binomial model.
    Ogum GE
    Genus; 1978; 34(3/4):153-64. PubMed ID: 12261739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion time models with time-changing exposure and heterogeneity: application to infectious diseases.
    Tournoud M; Ecochard R
    Biom J; 2008 Jun; 50(3):395-407. PubMed ID: 18435501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum likelihood estimation for N-mixture models.
    Haines LM
    Biometrics; 2016 Dec; 72(4):1235-1245. PubMed ID: 27043770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferences and Power Analysis Concerning Two Negative Binomial Distributions with An Application to MRI Lesion Counts Data.
    Aban IB; Cutter GR; Mavinga N
    Comput Stat Data Anal; 2008 Jan; 53(3):820-833. PubMed ID: 19177180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.