These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16345679)

  • 1. Surface-Active Lipids from Nocardia erythropolis Grown on Hydrocarbons.
    Macdonald CR; Cooper DG; Zajic JE
    Appl Environ Microbiol; 1981 Jan; 41(1):117-23. PubMed ID: 16345679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of surface-active lipids by Corynebacterium lepus.
    Cooper DG; Zajic JE; Gerson DF
    Appl Environ Microbiol; 1979 Jan; 37(1):4-10. PubMed ID: 760639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA; Finnerty WR
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipids of Pseudomonas aeruginosa cells grown on hydrocarbons and on trypticase soy broth.
    Edmonds P; Cooney JJ
    J Bacteriol; 1969 Apr; 98(1):16-22. PubMed ID: 4976464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of hydrocarbon structure on fatty acid, fatty alcohol, and beta-hydroxy acid composition in the hydrocarbon-degrading bacterium Marinobacter hydrocarbonoclasticus.
    Soltani M; Metzger P; Largeau C
    Lipids; 2004 May; 39(5):491-505. PubMed ID: 15506246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa.
    Romero EM; Brenner RR
    J Bacteriol; 1966 Jan; 91(1):183-8. PubMed ID: 4955247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane.
    Makula RA; Lockwood PJ; Finnerty WR
    J Bacteriol; 1975 Jan; 121(1):250-8. PubMed ID: 1116989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of hydrocarbons by members of the genus Candida. II. Oxidation of n-alkanes and l-alkenes by Candida lipolytica.
    Klug MJ; Markovetz AJ
    J Bacteriol; 1967 Jun; 93(6):1847-52. PubMed ID: 6025303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acids of extractable and bound lipids of Rhodomicrobium vannielii.
    Park CE; Berger LR
    J Bacteriol; 1967 Jan; 93(1):230-6. PubMed ID: 6020409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MICROBIAL INCORPORATION OF FATTY ACIDS DERIVED FROM N-ALKANES INTO GLYCERIDES AND WAXES.
    DAVIS JB
    Appl Microbiol; 1964 May; 12(3):210-4. PubMed ID: 14170957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of branched chain fatty acids in polar and neutral lipids of cheese and fish samples.
    Hauff S; Vetter W
    J Agric Food Chem; 2010 Jan; 58(2):707-12. PubMed ID: 20043637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain fatty acids and aldehydes.
    ALLISON MJ; BRYANT MP; KATZ I; KEENEY M
    J Bacteriol; 1962 May; 83(5):1084-93. PubMed ID: 13860622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrocarbon degradation by thermophilic Nocardia otitidiscaviarum strain TSH1: physiological aspects.
    Zeinali M; Vossoughi M; Ardestani SK; Babanezhad E; Masoumian M
    J Basic Microbiol; 2007 Dec; 47(6):534-9. PubMed ID: 18072240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biosynthetic incorporation of short-chain linear saturated fatty acids by Acholeplasma laidlawii B may suppress cell growth by perturbing membrane lipid polar headgroup distribution.
    Cheng XL; Tran QM; Foht PJ; Lewis RN; McElhaney RN
    Biochemistry; 2002 Jul; 41(27):8665-71. PubMed ID: 12093284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans.
    Napolitano R; Juárez MP
    Arch Biochem Biophys; 1997 Aug; 344(1):208-14. PubMed ID: 9244399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid profiles of sebaceous triglycerides by capillary gas chromatography with mass-selective detection.
    Marzouki ZM; Taha AM; Gomaa KS
    J Chromatogr; 1988 Mar; 425(1):11-24. PubMed ID: 3360862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular lipids of Cladosporium (Amorphotheca) resinae grown on glucose or on n-alkanes.
    Siporin C; Cooney JJ
    Appl Microbiol; 1975 May; 29(5):604-9. PubMed ID: 238469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the changes in amphotericin sensitivity of Candida albicans during growth.
    Gale EF; Johnson AM; Kerridge D; Koh TY
    J Gen Microbiol; 1975 Mar; 87(1):20-36. PubMed ID: 1094096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene.
    Cooper DG; Zajic JE; Gracey DE
    J Bacteriol; 1979 Feb; 137(2):795-801. PubMed ID: 422512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of fatty acid supplementation on the lipid composition of Mycobacterium smegmatis ATCC 607, grown at 27 degrees and 37 degrees C.
    Khuller GK; Taneja R; Nath N
    J Appl Bacteriol; 1983 Feb; 54(1):63-8. PubMed ID: 6853393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.