These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16345804)

  • 1. Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments.
    Smith RL; Klug MJ
    Appl Environ Microbiol; 1981 Jul; 42(1):116-21. PubMed ID: 16345804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments.
    Lovley DR; Dwyer DF; Klug MJ
    Appl Environ Microbiol; 1982 Jun; 43(6):1373-9. PubMed ID: 16346033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Jan; 45(1):187-92. PubMed ID: 16346164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments.
    Lovley DR; Phillips EJ
    Appl Environ Microbiol; 1987 Nov; 53(11):2636-41. PubMed ID: 16347483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatile Fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment.
    Sørensen J; Christensen D; Jørgensen BB
    Appl Environ Microbiol; 1981 Jul; 42(1):5-11. PubMed ID: 16345815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard.
    Finke N; Vandieken V; Jørgensen BB
    FEMS Microbiol Ecol; 2007 Jan; 59(1):10-22. PubMed ID: 17069623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments.
    Laanbroek HJ; Pfennig N
    Arch Microbiol; 1981 Jan; 128(3):330-5. PubMed ID: 7212933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrates for sulfate reduction and methane production in intertidal sediments.
    Winfrey MR; Ward DM
    Appl Environ Microbiol; 1983 Jan; 45(1):193-9. PubMed ID: 16346165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of sulfur compounds in the sediments of a eutrophic lake basin.
    Smith RL; Klug MJ
    Appl Environ Microbiol; 1981 May; 41(5):1230-7. PubMed ID: 16345774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediary metabolism of organic matter in the sediments of a eutrophic lake.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1982 Mar; 43(3):552-60. PubMed ID: 16345963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments.
    King GM
    Appl Environ Microbiol; 1984 Oct; 48(4):719-25. PubMed ID: 16346640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment.
    Vandieken V; Finke N; Thamdrup B
    FEMS Microbiol Ecol; 2014 Mar; 87(3):733-45. PubMed ID: 24266405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Apr; 45(4):1310-5. PubMed ID: 16346271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of fall turnover on terminal carbon metabolism in lake mendota sediments.
    Phelps TJ; Zeikus JG
    Appl Environ Microbiol; 1985 Nov; 50(5):1285-91. PubMed ID: 16346933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sulfate on lactate and C2-, C3- volatile fatty acid anaerobic degradation by a mixed microbial culture.
    Qatibi AI; Bories A; Garcia JL
    Antonie Van Leeuwenhoek; 1990 Nov; 58(4):241-8. PubMed ID: 2082810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose metabolism in sediments of a eutrophic lake: tracer analysis of uptake and product formation.
    King GM; Klug MJ
    Appl Environ Microbiol; 1982 Dec; 44(6):1308-17. PubMed ID: 16346148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralization of glucose and lignocellulose by four arctic freshwater sediments in response to nutrient enrichment.
    McKinley VL; Vestal JR
    Appl Environ Microbiol; 1992 May; 58(5):1554-63. PubMed ID: 1622225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of bacterial sulfate reduction in a eutrophic lake.
    Ingvorsen K; Zeikus JG; Brock TD
    Appl Environ Microbiol; 1981 Dec; 42(6):1029-36. PubMed ID: 16345898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria.
    Wu WM; Hickey RF; Zeikus JG
    Appl Environ Microbiol; 1991 Dec; 57(12):3438-49. PubMed ID: 1785921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.