These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16345883)

  • 1. Synthesis of 1,2-Epoxyoctane by Pseudomonas oleovorans During Growth in a Two-Phase System Containing High Concentrations of 1-Octene.
    de Smet MJ; Wynberg H; Witholt B
    Appl Environ Microbiol; 1981 Nov; 42(5):811-6. PubMed ID: 16345883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans.
    Abbott BJ; Hou CT
    Appl Microbiol; 1973 Jul; 26(1):86-91. PubMed ID: 4726833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic epoxidation: synthesis of 7,8-epoxy-1-octene, 1,2-7,8-diepoxyoctane, and 1,2-Epoxyoctane by Pseudomonas oleovorans.
    Schwartz RD; McCoy CJ
    Appl Environ Microbiol; 1976 Jan; 31(1):78-82. PubMed ID: 942210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements.
    Schwartz RD; McCoy CJ
    Appl Microbiol; 1973 Aug; 26(2):217-8. PubMed ID: 4743875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epoxidation of 1,7-octadiene by pseudomonas oleovorans in a membrane bioreactor.
    Doig SD; Boam AT; Livingston AG; Stuckey DC
    Biotechnol Bioeng; 1999 Jun; 63(5):601-11. PubMed ID: 10397816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains.
    Kraak MN; Smits TH; Kessler B; Witholt B
    J Bacteriol; 1997 Aug; 179(16):4985-91. PubMed ID: 9260937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High cell density cultivation of Pseudomonas oleovorans: growth and production of poly (3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems.
    Preusting H; van Houten R; Hoefs A; van Langenberghe EK; Favre-Bulle O; Witholt B
    Biotechnol Bioeng; 1993 Mar; 41(5):550-6. PubMed ID: 18609586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans.
    Schwartz RD
    Appl Microbiol; 1973 Apr; 25(4):574-7. PubMed ID: 4699216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of unsaturated polyesters by Pseudomonas oleovorans.
    Fritzsche K; Lenz RW; Fuller RC
    Int J Biol Macromol; 1990 Apr; 12(2):85-91. PubMed ID: 2078535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida.
    Fiedler S; Steinbüchel A; Rehm BH
    Arch Microbiol; 2002 Aug; 178(2):149-60. PubMed ID: 12115060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The AlkB monooxygenase of Pseudomonas oleovorans--synthesis, stability and level in recombinant Escherichia coli and the native host.
    Staijen IE; Hatzimanikatis V; Witholt B
    Eur J Biochem; 1997 Mar; 244(2):462-70. PubMed ID: 9119013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of microbial cells in a mixed matrix of silicone polymer and calcium alginate gel: epoxidation of 1-octene by Nocardia corallina B-276 in organic media.
    Kawakami K; Tsuruda S; Miyagi K
    Biotechnol Prog; 1990; 6(5):357-61. PubMed ID: 1366873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medium chain length alkane solvent-cell transfer rates in two-liquid phase, pseudomonas oleovorans cultures.
    Schmid A; Sonnleitner B; Witholt B
    Biotechnol Bioeng; 1998 Oct; 60(1):10-23. PubMed ID: 10099401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes.
    Prieto MA; Bühler B; Jung K; Witholt B; Kessler B
    J Bacteriol; 1999 Feb; 181(3):858-68. PubMed ID: 9922249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epoxidation of 1,7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane.
    Schwartz RD; McCoy CJ
    Appl Environ Microbiol; 1977 Jul; 34(1):47-9. PubMed ID: 889327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains.
    Staijen IE; Witholt B
    Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli.
    Staijen IE; Van Beilen JB; Witholt B
    Eur J Biochem; 2000 Apr; 267(7):1957-65. PubMed ID: 10727934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrimidine biosynthesis in Pseudomonas oleovorans.
    Haugaard LE; West TP
    J Appl Microbiol; 2002; 92(3):517-25. PubMed ID: 11872128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxyalkanoate biosynthetic pathway.
    Hoffmann N; Steinbüchel A; Rehm BH
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):665-70. PubMed ID: 11131392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth in batch and chemostat culture with different carbon sources.
    Durner R; Zinn M; Witholt B; Egli T
    Biotechnol Bioeng; 2001 Feb; 72(3):278-88. PubMed ID: 11135197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.