These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16345919)

  • 1. Assimilatory sulfur metabolism in marine microorganisms: considerations for the application of sulfate incorporation into protein as a measurement of natural population protein synthesis.
    Cuhel RL; Taylor CD; Jannasch HW
    Appl Environ Microbiol; 1982 Jan; 43(1):160-8. PubMed ID: 16345919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assimilatory Sulfur Metabolism in Marine Microorganisms: Sulfur Metabolism, Protein Synthesis, and Growth of Alteromonas luteo-violaceus and Pseudomonas halodurans During Perturbed Batch Growth.
    Cuhel RL; Taylor CD; Jannasch HW
    Appl Environ Microbiol; 1982 Jan; 43(1):151-9. PubMed ID: 16345918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assimilatory sulfur metabolism in marine microorganisms: characteristics and regulation of sulfate transport in Pseudomonas halodurans and Alteromonas luteo-violaceus.
    Cuhel RL; Taylor CD; Jannasch HW
    J Bacteriol; 1981 Aug; 147(2):340-9. PubMed ID: 7263610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assimilatory sulfur metabolism in marine microorganisms: a novel sulfate transport system in Alteromonas luteo-violaceus.
    Cuhel RL; Taylor CD; Jannasch HW
    J Bacteriol; 1981 Aug; 147(2):350-3. PubMed ID: 7263611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton.
    Kiene RP; Linn LJ; González J; Moran MA; Bruton JA
    Appl Environ Microbiol; 1999 Oct; 65(10):4549-58. PubMed ID: 10508088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimethylsulfoniopropionate Sulfur and Methyl Carbon Assimilation in
    Wirth JS; Wang T; Huang Q; White RH; Whitman WB
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic basis for assimilatory and dissimilatory sulfate reduction.
    PECK HD
    J Bacteriol; 1961 Dec; 82(6):933-9. PubMed ID: 14484818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments.
    King JK; Kostka JE; Frischer ME; Saunders FM
    Appl Environ Microbiol; 2000 Jun; 66(6):2430-7. PubMed ID: 10831421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: uptake kinetics and intracellular isotope dilution.
    Jørgensen NO
    Appl Environ Microbiol; 1992 Nov; 58(11):3638-46. PubMed ID: 16348807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial dissimilatory sulfur cycle in acid mine water.
    Tuttle JH; Dugan PR; Macmillan CB; Randles CI
    J Bacteriol; 1969 Feb; 97(2):594-602. PubMed ID: 5773013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate resupply accentuates protein synthesis in coordination with nitrogen metabolism in sulfur deprived Brassica napus.
    Zhang Q; Lee BR; Park SH; Zaman R; Avice JC; Ourry A; Kim TH
    Plant Physiol Biochem; 2015 Feb; 87():1-8. PubMed ID: 25528220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.
    Einsiedl F
    Environ Sci Technol; 2009 Jan; 43(1):82-7. PubMed ID: 19209588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunofluorescent Assay for the Marine Ammonium-Oxidizing Bacterium Nitrosococcus oceanus.
    Ward BB; Perry MJ
    Appl Environ Microbiol; 1980 Apr; 39(4):913-8. PubMed ID: 16345557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The assimilation of sulfur from multiple sources and its correlation with expression of the sulfate-starvation-induced stimulon in Pseudomonas putida S-313.
    Beil S; Kertesz MA; Leisinger T; Cook AM
    Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():1989-95. PubMed ID: 8800815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.
    Wu S; Jeschke C; Dong R; Paschke H; Kuschk P; Knöller K
    Water Res; 2011 Dec; 45(20):6688-98. PubMed ID: 22055121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen respiration by desulfovibrio species.
    Cypionka H
    Annu Rev Microbiol; 2000; 54():827-48. PubMed ID: 11018146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The marine sulfate reducer Desulfobacterium autotrophicum HRM2 can switch between low and high apparent half-saturation constants for dissimilatory sulfate reduction.
    Tarpgaard IH; Jørgensen BB; Kjeldsen KU; Røy H
    FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28158724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling reduction of uranium U(VI) under variable sulfate concentrations by sulfate-reducing bacteria.
    Spear JR; Figueroa LA; Honeyman BD
    Appl Environ Microbiol; 2000 Sep; 66(9):3711-21. PubMed ID: 10966381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome Remodeling in Response to Sulfur Limitation in "
    Smith DP; Nicora CD; Carini P; Lipton MS; Norbeck AD; Smith RD; Giovannoni SJ
    mSystems; 2016; 1(4):. PubMed ID: 27822545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries.
    Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ
    Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.