These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16346014)

  • 1. Pock Formation of Streptomycetes endus with Production of Phage Taillike Particles.
    Ogata S; Suenaga H; Hayashida S
    Appl Environ Microbiol; 1982 May; 43(5):1182-7. PubMed ID: 16346014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Lysogenicity in Streptomyces azureus.
    Ogata S; Yoshino S; Suenaga H; Aoyama K; Kitajima N; Hayashida S
    Appl Environ Microbiol; 1981 Jul; 42(1):135-41. PubMed ID: 16345806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of UV dose on formation of spontaneously developing pocks in Streptomyces azureus ATCC14921.
    Yamada S; Suenaga H; Doi K; Yoshino S; Ogata S
    Biosci Biotechnol Biochem; 2003 Apr; 67(4):797-802. PubMed ID: 12784620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pock Formation of Streptomyces endus with Production of Phage Taillike Particles.
    Appl Environ Microbiol; 1982 Dec; 44(6):1482. PubMed ID: 16346158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicopy derivative of pock-forming plasmid pSA1 in Streptomyces azureus.
    Miyoshi YK; Ogata S; Hayashida S
    J Bacteriol; 1986 Oct; 168(1):452-4. PubMed ID: 3759910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sporulation-inhibitory gene in pock-forming plasmid pSA1.1 of Streptomyces azureus.
    Tomura T; Kishino H; Doi K; Hara T; Kuhara S; Ogata S
    Biosci Biotechnol Biochem; 1993 Mar; 57(3):438-43. PubMed ID: 7763542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual relation of three pock-forming plasmids resident in Streptomyces noursei.
    Kojima I; Nanjyo T; Okanishi M
    J Antibiot (Tokyo); 1985 Mar; 38(3):390-400. PubMed ID: 4008331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a pock-forming plasmid pTA4001 from Streptomyces lavendulae.
    Kobayashi T; Shimotsu H; Horinouchi S; Uozumi T; Beppu T
    J Antibiot (Tokyo); 1984 Apr; 37(4):368-75. PubMed ID: 6327592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycelial differentiation and spore formation by Streptomyces brasiliensis in submerged culture.
    Rueda B; Miguélez EM; Hardisson C; Manzanal MB
    Can J Microbiol; 2001 Nov; 47(11):1042-7. PubMed ID: 11766053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression analysis of the spi gene in the pock-forming plasmid pSA1.1 from Streptomyces azureus and localization of its product during differentiation.
    Doi K; Ohyama Y; Yokoyama E; Nishiyama T; Fujino Y; Nagayoshi Y; Ohshima T; Ogata S
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):707-16. PubMed ID: 22526776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmids of Streptomyces kasugaensis MB273: their pock formation, their dispensable endonuclease cleavage sites for pock formation, and transformation of S. kasugaensis MB273 by them.
    Akagawa H; Kawaguchi K; Ichihara M
    J Antibiot (Tokyo); 1984 Sep; 37(9):1016-25. PubMed ID: 6094412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of pock formation by Shope fibroma virus on monolayers of rabbit cells.
    Israeli E
    J Bacteriol; 1966 Sep; 92(3):727-32. PubMed ID: 5922544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chromosomal locus encoding a phosphoserine phosphatase- and a truncated MinD-like protein affects differentiation in Streptomyces azureus ATCC14921.
    Nishiyama T; Sakemi H; Sumi H; Tokunaga S; Doi K; Ogata S
    FEMS Microbiol Lett; 2000 Sep; 190(1):133-9. PubMed ID: 10981703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple biological marker to differentiate the types of Herpes Simplex Viruses in resource-limited settings.
    Akter T; Tabassum S; Nessa A; Jahan M
    Bangladesh Med Res Counc Bull; 2012 Apr; 38(1):23-6. PubMed ID: 22545347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerial hyphae in surface cultures of Streptomyces lividans and Streptomyces coelicolor originate from viable segments surviving an early programmed cell death event.
    Manteca A; Claessen D; Lopez-Iglesias C; Sanchez J
    FEMS Microbiol Lett; 2007 Sep; 274(1):118-25. PubMed ID: 17663705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures.
    Tillotson RD; Wösten HA; Richter M; Willey JM
    Mol Microbiol; 1998 Nov; 30(3):595-602. PubMed ID: 9822824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and persistence of actinophage RP2 isolated from Streptomyces rimosus ATCC 10970.
    Hranueli D; Pigac J; Vesligaj M
    J Gen Microbiol; 1979 Oct; 114(2):295-303. PubMed ID: 541659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease.
    Xu T; Li Y; Zeng X; Yang X; Yang Y; Yuan S; Hu X; Zeng J; Wang Z; Liu Q; Liu Y; Liao H; Tong C; Liu X; Zhu Y
    J Sci Food Agric; 2017 Mar; 97(4):1149-1157. PubMed ID: 27293085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes.
    Kodani S; Lodato MA; Durrant MC; Picart F; Willey JM
    Mol Microbiol; 2005 Dec; 58(5):1368-80. PubMed ID: 16313622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in glycogen and trehalose content of Streptomyces brasiliensis hyphae during growth in liquid cultures under sporulating and non-sporulating conditions.
    Rueda B; Miguélez EM; Hardisson C; Manzanal MB
    FEMS Microbiol Lett; 2001 Jan; 194(2):181-5. PubMed ID: 11164305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.