These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16346033)

  • 1. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments.
    Lovley DR; Dwyer DF; Klug MJ
    Appl Environ Microbiol; 1982 Jun; 43(6):1373-9. PubMed ID: 16346033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Jan; 45(1):187-92. PubMed ID: 16346164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments.
    Lovley DR; Phillips EJ
    Appl Environ Microbiol; 1987 Nov; 53(11):2636-41. PubMed ID: 16347483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptic Methane-Cycling by Methanogens During Multi-Year Incubation of Estuarine Sediment.
    Kevorkian RT; Sipes K; Winstead R; Paul R; Lloyd KG
    Front Microbiol; 2022; 13():847563. PubMed ID: 35369448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments.
    Finke N; Hoehler TM; Jørgensen BB
    Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments.
    Smith RL; Klug MJ
    Appl Environ Microbiol; 1981 Jul; 42(1):116-21. PubMed ID: 16345804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments.
    Lomans BP; Op den Camp HJ; Pol A; van der Drift C; Vogels GD
    Appl Environ Microbiol; 1999 May; 65(5):2116-21. PubMed ID: 10224009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments.
    King GM
    Appl Environ Microbiol; 1984 Oct; 48(4):719-25. PubMed ID: 16346640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of fall turnover on terminal carbon metabolism in lake mendota sediments.
    Phelps TJ; Zeikus JG
    Appl Environ Microbiol; 1985 Nov; 50(5):1285-91. PubMed ID: 16346933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition experiments on anaerobic methane oxidation.
    Alperin MJ; Reeburgh WS
    Appl Environ Microbiol; 1985 Oct; 50(4):940-5. PubMed ID: 16346921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing sulfate levels show a differential impact on synthetic communities comprising different methanogens and a sulfate reducer.
    Chen J; Wade MJ; Dolfing J; Soyer OS
    J R Soc Interface; 2019 May; 16(154):20190129. PubMed ID: 31064258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Butyrate Conversion by Sulfate-Reducing and Methanogenic Communities from Anoxic Sediments of Aarhus Bay, Denmark.
    Ozuolmez D; Moore EK; Hopmans EC; Sinninghe Damsté JS; Stams AJM; Plugge CM
    Microorganisms; 2020 Apr; 8(4):. PubMed ID: 32331369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment.
    Scholten JC; Conrad R; Stams AJ
    FEMS Microbiol Ecol; 2000 Apr; 32(1):35-42. PubMed ID: 10779617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of methanogenic and sulfate-reducing bacteria in near-shore marine sediments.
    Hines ME; Buck JD
    Appl Environ Microbiol; 1982 Feb; 43(2):447-53. PubMed ID: 16345950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Apr; 45(4):1310-5. PubMed ID: 16346271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of dimethylsulfide-degrading methanogens and sulfate-reducing bacteria in anoxic sediments along the Medway Estuary, UK.
    Tsola SL; Zhu Y; Ghurnee O; Economou CK; Trimmer M; Eyice Ö
    Environ Microbiol; 2021 Aug; 23(8):4434-4449. PubMed ID: 34110089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic microflora of everglades sediments: effects of nutrients on population profiles and activities.
    Drake HL; Aumen NG; Kuhner C; Wagner C; Griesshammer A; Schmittroth M
    Appl Environ Microbiol; 1996 Feb; 62(2):486-93. PubMed ID: 16535236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen.
    Kiene RP; Oremland RS; Catena A; Miller LG; Capone DG
    Appl Environ Microbiol; 1986 Nov; 52(5):1037-45. PubMed ID: 16347202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.