These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 16346074)
1. Role of aerobic microbial populations in cellulose digestion by desert millipedes. Taylor EC Appl Environ Microbiol; 1982 Aug; 44(2):281-91. PubMed ID: 16346074 [TBL] [Abstract][Full Text] [Related]
2. Food, ingestion rates, and assimilation in the desert millipede Orthoporus ornatus (Girard) (Diplopoda). Wooten RC; Crawford CS Oecologia; 1975 Sep; 20(3):231-236. PubMed ID: 28308989 [TBL] [Abstract][Full Text] [Related]
3. Anatomy and histology of the alimentary tract of the desert millipede Orthoporus ornatus (Girard) (Diplopoda: Spirostreptidae). Nunez FS; Crawford CS J Morphol; 1977 Jan; 151(1):121-130. PubMed ID: 30241433 [TBL] [Abstract][Full Text] [Related]
4. Feeding-season production in the desert millipede Orthoporus ornatus (Girard) (Diplopoda). Crawford CS Oecologia; 1976 Sep; 24(3):265-276. PubMed ID: 28308253 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic activities in the digestive tract of spirostreptid and spirobolid millipedes (Diplopoda: Spirostreptida and Spirobolida). Šustr V; Semanová S; Rost-Roszkowska MM; Tajovský K; Sosinka A; Kaszuba F Comp Biochem Physiol B Biochem Mol Biol; 2020 Mar; 241():110388. PubMed ID: 31751767 [TBL] [Abstract][Full Text] [Related]
6. The distribution of active β-glucosidase-producing microbial communities in composting. Zang X; Liu M; Wang H; Fan Y; Zhang H; Liu J; Xing E; Xu X; Li H Can J Microbiol; 2017 Dec; 63(12):998-1008. PubMed ID: 28892642 [TBL] [Abstract][Full Text] [Related]
7. Compartmentalization of microbial communities that inhabit the hindguts of millipedes. Nardi JB; Bee CM; Taylor SJ Arthropod Struct Dev; 2016 Sep; 45(5):462-474. PubMed ID: 27597263 [TBL] [Abstract][Full Text] [Related]
8. Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Zhang M; Su R; Qi W; He Z Appl Biochem Biotechnol; 2010 Mar; 160(5):1407-14. PubMed ID: 19288067 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of microbial floras and functional gene levels in an anaerobic/aerobic bio-reactor for the degradation of carboxymethyl cellulose. Ji G; Wang C; Guo F Appl Microbiol Biotechnol; 2013 Apr; 97(7):3195-206. PubMed ID: 22576945 [TBL] [Abstract][Full Text] [Related]
10. Cellulose degradation and cellulase formation by Phialophora malorum. Berg B Arch Microbiol; 1978 Jul; 118(1):61-5. PubMed ID: 29588 [TBL] [Abstract][Full Text] [Related]
11. Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam. Do TH; Nguyen TT; Nguyen TN; Le QG; Nguyen C; Kimura K; Truong NH J Biosci Bioeng; 2014 Dec; 118(6):665-71. PubMed ID: 24928651 [TBL] [Abstract][Full Text] [Related]
12. Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat,Thermobia domestica (Zygentoma, Lepismatidae). Treves DS; Martin MM J Chem Ecol; 1994 Aug; 20(8):2003-20. PubMed ID: 24242725 [TBL] [Abstract][Full Text] [Related]
13. Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-beta-1,4-glucanase. Tokuda G; Watanabe H; Matsumoto T; Noda H Zoolog Sci; 1997 Feb; 14(1):83-93. PubMed ID: 9200983 [TBL] [Abstract][Full Text] [Related]
14. Sodium and potassium transport across the isolated hindgut of the desert millipede Orthoporus ornatus (Girard). Moffett DF Comp Biochem Physiol A Comp Physiol; 1975 Jan; 50(1A):57-63. PubMed ID: 234061 [No Abstract] [Full Text] [Related]
15. Ultrastructural studies of the termite (Odontotermes obesus) gut microflora and its cellulolytic properties. Paul J; Saxena S; Varma A World J Microbiol Biotechnol; 1993 Jan; 9(1):108-12. PubMed ID: 24419852 [TBL] [Abstract][Full Text] [Related]
17. Addition of cloned beta-glucosidase enhances the degradation of crystalline cellulose by the Clostridium thermocellum cellulose complex. Kadam SK; Demain AL Biochem Biophys Res Commun; 1989 Jun; 161(2):706-11. PubMed ID: 2500123 [TBL] [Abstract][Full Text] [Related]
18. Expression and characterization of a glucose-tolerant β-1,4-glucosidase with wide substrate specificity from Cytophaga hutchinsonii. Zhang C; Wang X; Zhang W; Zhao Y; Lu X Appl Microbiol Biotechnol; 2017 Mar; 101(5):1919-1926. PubMed ID: 27822737 [TBL] [Abstract][Full Text] [Related]
19. The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CM126 isolated from municipal sewage sludge. Nitisinprasert S; Temmes A J Appl Bacteriol; 1991 Aug; 71(2):154-61. PubMed ID: 1917724 [TBL] [Abstract][Full Text] [Related]
20. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides. Schellenberger S; Drake HL; Kolb S FEMS Microbiol Lett; 2012 Feb; 327(1):60-5. PubMed ID: 22098368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]