BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16346075)

  • 1. Dilution of liquid Rhizobium cultures to increase production capacity of inoculant plants.
    Somasegaran P; Halliday J
    Appl Environ Microbiol; 1982 Aug; 44(2):330-3. PubMed ID: 16346075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inoculant Production with Diluted Liquid Cultures of Rhizobium spp. and Autoclaved Peat: Evaluation of Diluents, Rhizobium spp., Peats, Sterility Requirements, Storage, and Plant Effectiveness.
    Somasegaran P
    Appl Environ Microbiol; 1985 Aug; 50(2):398-405. PubMed ID: 16346860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineral soils as carriers for Rhizobium inoculants.
    Chao WL; Alexander M
    Appl Environ Microbiol; 1984 Jan; 47(1):94-7. PubMed ID: 16346460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds.
    Temprano FJ; Albareda M; Camacho M; Daza A; Santamaría C; Rodríguez-Navarro DN
    Int Microbiol; 2002 Jun; 5(2):81-6. PubMed ID: 12180784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance.
    Atieno M; Wilson N; Casteriano A; Crossett B; Lesueur D; Deaker R
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7521-7539. PubMed ID: 29934654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Ensifer meliloti genes required for survival during peat-based bioinoculant maturation by STM-seq.
    Lozano MJ; Mogro EG; Eugenia Salas M; Erdozain SA; Zuber NE; Becker A; Lagares A
    J Biotechnol; 2023 Jan; 362():12-23. PubMed ID: 36535417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival of Rhizobium phaseoli in Coal-Based Legume Inoculants.
    Paczkowski MW; Berryhill DL
    Appl Environ Microbiol; 1979 Oct; 38(4):612-5. PubMed ID: 16345443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Carrier and Temperature on Survival of Rhizobium spp. in Legume Inocula: Development of an Improved Type of Inoculant.
    Kremer RJ; Peterson HL
    Appl Environ Microbiol; 1983 Jun; 45(6):1790-4. PubMed ID: 16346313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semienclosed Tube Cultures of Bean Plants (Phaseolus vulgaris L.) for Enumeration of Rhizobium phaseoli by the Most-Probable-Number Technique.
    Araujo RS; Maya-Flores J; Barnes-McConnell D; Yokoyama C; Dazzo FB; Bliss FA
    Appl Environ Microbiol; 1986 Oct; 52(4):954-6. PubMed ID: 16347191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effectiveness of Rhizobium strains used in inoculants after their introduction into soil.
    van Rensburg HJ; Strijdom BW
    Appl Environ Microbiol; 1985 Jan; 49(1):127-31. PubMed ID: 16346692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation of a Highly Effective Inoculant for Common Bean Based on an Autochthonous Elite Strain of
    Pastor-Bueis R; Sánchez-Cañizares C; James EK; González-Andrés F
    Front Microbiol; 2019; 10():2724. PubMed ID: 31920999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oils as adhesives for seed inoculation and their influence on the survival of Rhizobium spp. and Bradyrhizobium spp. on inoculated seeds.
    Hoben HJ; Aung NN; Somasegaran P; Kang UG
    World J Microbiol Biotechnol; 1991 May; 7(3):324-30. PubMed ID: 24425019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symbiotic potential and survival of native rhizobia kept on different carriers.
    Ruíz-Valdiviezo VM; Canseco LM; Suárez LA; Gutiérrez-Miceli FA; Dendooven L; Rincón-Rosales R
    Braz J Microbiol; 2015; 46(3):735-42. PubMed ID: 26413054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival of Rhizobium phaseoli in Coal-Based Legume Inoculants Applied to Seeds.
    Crawford SL; Berryhill DL
    Appl Environ Microbiol; 1983 Feb; 45(2):703-5. PubMed ID: 16346218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Production of soy bean inoculants. Behavior of supports based on peat from Tierra del Fuego sterilized by vapor and ethylene oxide].
    Balatti AP; Mazza LA
    Rev Argent Microbiol; 1979; 11(3):83-8. PubMed ID: 263653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preservation of Rhizobium viability and symbiotic infectivity by suspension in water.
    Crist DK; Wyza RE; Mills KK; Bauer WD; Evans WR
    Appl Environ Microbiol; 1984 May; 47(5):895-900. PubMed ID: 6378090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific distribution and competitive ability of indigenous bean-nodulating rhizobia isolated from organic fields in Minnesota.
    Wongphatcharachai M; Wang P; Staley C; Chun CL; Ferguson JA; Moncada KM; Sheaffer CC; Sadowsky MJ
    J Biotechnol; 2015 Nov; 214():158-68. PubMed ID: 26403588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdate in Rhizobial Seed-Coat Formulations Improves the Production and Nodulation of Alfalfa.
    Zhou J; Deng B; Zhang Y; Cobb AB; Zhang Z
    PLoS One; 2017; 12(1):e0170179. PubMed ID: 28099471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bradyrhizobium japonicum Survival in and Soybean Inoculation with Fluid Gels.
    Jawson MD; Franzluebbers AJ; Berg RK
    Appl Environ Microbiol; 1989 Mar; 55(3):617-22. PubMed ID: 16347870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing Liquid Rhizobium Inoculants with Enhanced Long-Term Survival, Storage Stability, and Plant Growth Promotion Using Ectoine Additive.
    Elsakhawy T; Ghazi A; Abdel-Rahman MA
    Curr Microbiol; 2021 Jan; 78(1):282-291. PubMed ID: 33136205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.