These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16346163)

  • 1. Growth Kinetics and Yield Coefficients of the Extreme Thermophile Thermothrix thiopara in Continuous Culture.
    Brannan DK; Caldwell DE
    Appl Environ Microbiol; 1983 Jan; 45(1):169-73. PubMed ID: 16346163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermothrix thiopara: Growth and Metabolism of a Newly Isolated Thermophile Capable of Oxidizing Sulfur and Sulfur Compounds.
    Brannan DK; Caldwell DE
    Appl Environ Microbiol; 1980 Aug; 40(2):211-6. PubMed ID: 16345601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apurinic and apyrimidinic DNA endonuclease of extremely thermophilic Thermothrix thiopara.
    Kaboev OK; Luchkina LA; Kuziakina TI
    J Bacteriol; 1985 Nov; 164(2):878-81. PubMed ID: 2414271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uracil-DNA glycosylase of thermophilic Thermothrix thiopara.
    Kaboev OK; Luchkina LA; Kuziakina TI
    J Bacteriol; 1985 Oct; 164(1):421-4. PubMed ID: 4044527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium.
    Odintsova EV; Jannasch HW; Mamone JA; Langworthy TA
    Int J Syst Bacteriol; 1996 Apr; 46(2):422-8. PubMed ID: 8934901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemolithoautotrophy and mixotrophy in the thiophene-2-carboxylic acid-utilizing xanthobacter tagetidis.
    Padden AN; Kelly DP; Wood AP
    Arch Microbiol; 1998 Mar; 169(3):249-56. PubMed ID: 9477260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yield coefficients of Thiobacillus neapolitanus in continuous culture.
    Hempfling WP; Vishniac W
    J Bacteriol; 1967 Mar; 93(3):874-8. PubMed ID: 6025430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfur-oxidizing bacteria from soda lakes.
    Sorokin DY; Banciu H; van Loosdrecht M; Kuenen JG
    Extremophiles; 2003 Jun; 7(3):195-203. PubMed ID: 12768450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans.
    Timer-ten Hoor A
    Antonie Van Leeuwenhoek; 1981; 47(3):231-43. PubMed ID: 6791590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas.
    Takai K; Suzuki M; Nakagawa S; Miyazaki M; Suzuki Y; Inagaki F; Horikoshi K
    Int J Syst Evol Microbiol; 2006 Aug; 56(Pt 8):1725-1733. PubMed ID: 16901999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus.
    de Vrije T; Mars AE; Budde MA; Lai MH; Dijkema C; de Waard P; Claassen PA
    Appl Microbiol Biotechnol; 2007 Apr; 74(6):1358-67. PubMed ID: 17216445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of Bacillus stearothermophilus growth: molar growth yield and temperature effects on growth efficiency.
    Coultate TP; Sundaram TK
    J Bacteriol; 1975 Jan; 121(1):55-64. PubMed ID: 1116992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur formation by steady-state continuous cultures of a sulfoxidizing consortium and Thiobacillus thioparus ATCC 23645.
    Alcántara S; Velasco A; Revah S
    Environ Technol; 2004 Oct; 25(10):1151-7. PubMed ID: 15551829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture.
    Russell JB; Baldwin RL
    Appl Environ Microbiol; 1979 Mar; 37(3):537-43. PubMed ID: 16345359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic comparisons of mesophilic and thermophilic aerobic biomass.
    Vogelaar JC; Klapwijk B; Temmink H; van Lier JB
    J Ind Microbiol Biotechnol; 2003 Feb; 30(2):81-8. PubMed ID: 12612781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a proposed surface colonization equation usingThermothrix thiopara as a model organism.
    Brannan DK; Caldwell DE
    Microb Ecol; 1982 Jun; 8(1):15-21. PubMed ID: 24225694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.
    Zakhartsev M; Yang X; Reuss M; Pörtner HO
    J Therm Biol; 2015 Aug; 52():117-29. PubMed ID: 26267506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling.
    Wang G; Post WM
    FEMS Microbiol Ecol; 2012 Sep; 81(3):610-7. PubMed ID: 22500928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate.
    Eccleston M; Kelly DP
    J Bacteriol; 1978 Jun; 134(3):718-27. PubMed ID: 26665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.