These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16346167)

  • 1. Breakdown of diazotized proteins and synthetic substrates by rumen bacterial proteases.
    Wallace RJ; Kopecny J
    Appl Environ Microbiol; 1983 Jan; 45(1):212-7. PubMed ID: 16346167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria.
    Wallace RJ
    Br J Nutr; 1983 Sep; 50(2):345-55. PubMed ID: 6351902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular location and some properties of proteolytic enzymes of rumen bacteria.
    Kopecny J; Wallace RJ
    Appl Environ Microbiol; 1982 May; 43(5):1026-33. PubMed ID: 16346003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastinolytic and proteolytic enzymes.
    Kessler E; Safrin M
    Methods Mol Biol; 2014; 1149():135-69. PubMed ID: 24818903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of soluble proteins to rumen bacteria and the role of adsorption in proteolysis.
    Wallace RJ
    Br J Nutr; 1985 Mar; 53(2):399-408. PubMed ID: 3904824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breakdown of protein and proteolytic activity in the sheep rumen at different times after feeding.
    BLACKBURN TH; HOBSON PN
    J Gen Microbiol; 1960 Feb; 22():290-4. PubMed ID: 13801186
    [No Abstract]   [Full Text] [Related]  

  • 7. Microbial attachment and feed digestion in the rumen.
    McAllister TA; Bae HD; Jones GA; Cheng KJ
    J Anim Sci; 1994 Nov; 72(11):3004-18. PubMed ID: 7730196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of a role for plant proteases in the degradation of herbage proteins in the rumen of grazing cattle.
    Zhu WY; Kingston-Smith AH; Troncoso D; Merry RJ; Davies DR; Pichard G; Thomas H; Theodorou MK
    J Dairy Sci; 1999 Dec; 82(12):2651-8. PubMed ID: 10629813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feedstuffs.
    Krishnamoorthy U; Sniffen CJ; Stern MD; Van Soest PJ
    Br J Nutr; 1983 Nov; 50(3):555-68. PubMed ID: 6357276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of microflora in proteolysis in the colon.
    Gibson SA; McFarlan C; Hay S; MacFarlane GT
    Appl Environ Microbiol; 1989 Mar; 55(3):679-83. PubMed ID: 2648991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors.
    Brock FM; Forsberg CW; Buchanan-Smith JG
    Appl Environ Microbiol; 1982 Sep; 44(3):561-9. PubMed ID: 6753744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated, dynamic model of feed hydration and digestion, and subsequent bacterial mass accumulation in the rumen.
    van Milgen J; Berger LL; Murphy MR
    Br J Nutr; 1993 Sep; 70(2):471-83. PubMed ID: 8260474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria.
    Hiltner P; Dehority BA
    Appl Environ Microbiol; 1983 Sep; 46(3):642-8. PubMed ID: 6639018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms.
    Mahadevan S; Erfle JD; Sauer FD
    J Anim Sci; 1980 Apr; 50(4):723-8. PubMed ID: 6989794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rumen bypass and protection of proteins and amino acids.
    Chalupa W
    J Dairy Sci; 1975 Aug; 58(8):1198-218. PubMed ID: 1099125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A survey of peptidase activity in rumen bacteria.
    Wallace RJ; McKain N
    J Gen Microbiol; 1991 Sep; 137(9):2259-64. PubMed ID: 1748877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of protein structure in combined feeds (hulless barley with bioethanol coproduct of wheat dried distillers grains with solubles) in relation to protein rumen degradation kinetics and intestinal availability in dairy cattle.
    Zhang X; Yu P
    J Dairy Sci; 2012 Jun; 95(6):3363-79. PubMed ID: 22612970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ identification and quantification of protein-hydrolyzing ruminal bacteria associated with the digestion of barley and corn grain.
    Xia Y; Kong Y; Huang H; Yang HE; Forster R; McAllister TA
    Can J Microbiol; 2016 Dec; 62(12):1063-1067. PubMed ID: 27805413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.