BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16346296)

  • 1. Volatile Fatty Acid production by the hindgut microbiota of xylophagous termites.
    Odelson DA; Breznak JA
    Appl Environ Microbiol; 1983 May; 45(5):1602-13. PubMed ID: 16346296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetate Synthesis from H(2) plus CO(2) by Termite Gut Microbes.
    Breznak JA; Switzer JM
    Appl Environ Microbiol; 1986 Oct; 52(4):623-30. PubMed ID: 16347157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of oxygen on metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes.
    Tholen A; Brune A
    Environ Microbiol; 2000 Aug; 2(4):436-49. PubMed ID: 11234932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Core and Caste-Specific Microbiota in the Termite, Reticulitermes flavipes.
    Benjamino J; Graf J
    Front Microbiol; 2016; 7():171. PubMed ID: 26925043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki].
    Breznak JA; Pankratz HS
    Appl Environ Microbiol; 1977 Feb; 33(2):406-26. PubMed ID: 848959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen Concentration Profiles at the Oxic-Anoxic Interface: a Microsensor Study of the Hindgut of the Wood-Feeding Lower Termite Reticulitermes flavipes (Kollar).
    Ebert A; Brune A
    Appl Environ Microbiol; 1997 Oct; 63(10):4039-46. PubMed ID: 16535716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Termite Gut Microflora as an Oxygen Sink: Microelectrode Determination of Oxygen and pH Gradients in Guts of Lower and Higher Termites.
    Brune A; Emerson D; Breznak JA
    Appl Environ Microbiol; 1995 Jul; 61(7):2681-7. PubMed ID: 16535076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques.
    Bauer S; Tholen A; Overmann J; Brune A
    Arch Microbiol; 2000 Feb; 173(2):126-37. PubMed ID: 10795684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites.
    Brune A; Miambi E; Breznak JA
    Appl Environ Microbiol; 1995 Jul; 61(7):2688-95. PubMed ID: 16535077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunnel formation by Reticulitermes flavipes and Coptotermes formosanus (Isoptera: Rhinotermitidae) in response to wood in sand.
    Puche H; Su NY
    J Econ Entomol; 2001 Dec; 94(6):1398-404. PubMed ID: 11777041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes.
    Zhou X; Smith JA; Oi FM; Koehler PG; Bennett GW; Scharf ME
    Gene; 2007 Jun; 395(1-2):29-39. PubMed ID: 17408885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the region-wise diversity and functions of symbiotic bacteria in the gut system of wood-feeding termite, Coptotermes formosanus, toward the degradation of cellulose, hemicellulose, and organic dyes.
    Dar MA; Xie R; Pandit RS; Danso B; Dong C; Sun J
    Insect Sci; 2022 Oct; 29(5):1414-1432. PubMed ID: 35134272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition.
    Boucias DG; Cai Y; Sun Y; Lietze VU; Sen R; Raychoudhury R; Scharf ME
    Mol Ecol; 2013 Apr; 22(7):1836-53. PubMed ID: 23379767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts.
    Pester M; Brune A
    ISME J; 2007 Oct; 1(6):551-65. PubMed ID: 18043656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel strain of Steinernema riobrave (Rhabditida: Steinernematidae) possesses superior virulence to subterranean termites (Isoptera: Rhinotermitidae).
    Yu H; Gouge DH; Shapiro-Ilan DI
    J Nematol; 2010 Jun; 42(2):91-5. PubMed ID: 22736844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite.
    Adams L; Boopathy R
    Bioresour Technol; 2005 Sep; 96(14):1592-8. PubMed ID: 15978992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a laccase from a wood-feeding termite, Coptotermes formosanus.
    Geng A; Wu J; Xie RR; Li X; Chang FX; Sun JZ
    Insect Sci; 2018 Apr; 25(2):251-258. PubMed ID: 27800659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.).
    Schmitt-Wagner D; Brune A
    Appl Environ Microbiol; 1999 Oct; 65(10):4490-6. PubMed ID: 10508080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites.
    Kuhnigk T; König H
    J Basic Microbiol; 1997; 37(3):205-11. PubMed ID: 9265743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological ecology of Stenoxybacter acetivorans, an obligate microaerophile in termite guts.
    Wertz JT; Breznak JA
    Appl Environ Microbiol; 2007 Nov; 73(21):6829-41. PubMed ID: 17827335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.