These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16346317)

  • 1. Metabolism of acetate, methanol, and methylated amines in intertidal sediments of lowes cove, maine.
    King GM; Klug MJ; Lovley DR
    Appl Environ Microbiol; 1983 Jun; 45(6):1848-53. PubMed ID: 16346317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments.
    King GM
    Appl Environ Microbiol; 1984 Oct; 48(4):719-25. PubMed ID: 16346640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrates for sulfate reduction and methane production in intertidal sediments.
    Winfrey MR; Ward DM
    Appl Environ Microbiol; 1983 Jan; 45(1):193-9. PubMed ID: 16346165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fall turnover on terminal carbon metabolism in lake mendota sediments.
    Phelps TJ; Zeikus JG
    Appl Environ Microbiol; 1985 Nov; 50(5):1285-91. PubMed ID: 16346933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen.
    Kiene RP; Oremland RS; Catena A; Miller LG; Capone DG
    Appl Environ Microbiol; 1986 Nov; 52(5):1037-45. PubMed ID: 16347202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the carson river, nevada.
    Oremland RS; Miller LG; Dowdle P; Connell T; Barkay T
    Appl Environ Microbiol; 1995 Jul; 61(7):2745-53. PubMed ID: 16535081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for anaerobic syntrophic acetate oxidation during methane production in the profundal sediment of subtropical Lake Kinneret (Israel).
    Nüsslein B; Chin KJ; Eckert W; Conrad R
    Environ Microbiol; 2001 Jul; 3(7):460-70. PubMed ID: 11553236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disparate distributions of chemolithotrophs containing form IA or IC large subunit genes for ribulose-1,5-bisphosphate carboxylase/oxygenase in intertidal marine and littoral lake sediments.
    Nigro LM; King GM
    FEMS Microbiol Ecol; 2007 Apr; 60(1):113-25. PubMed ID: 17381527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition experiments on anaerobic methane oxidation.
    Alperin MJ; Reeburgh WS
    Appl Environ Microbiol; 1985 Oct; 50(4):940-5. PubMed ID: 16346921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanogenesis from Methylated Amines in a Hypersaline Algal Mat.
    King GM
    Appl Environ Microbiol; 1988 Jan; 54(1):130-136. PubMed ID: 16347519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Apr; 45(4):1310-5. PubMed ID: 16346271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of methane and carbon dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium.
    Oremland RS; Zehr JP
    Appl Environ Microbiol; 1986 Nov; 52(5):1031-6. PubMed ID: 16347201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
    Lovley DR; Klug MJ
    Appl Environ Microbiol; 1983 Jan; 45(1):187-92. PubMed ID: 16346164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of unitrophic and mixotrophic substrate metabolism by acetate-adapted strain of Methanosarcina barkeri.
    Krzycki JA; Wolkin RH; Zeikus JG
    J Bacteriol; 1982 Jan; 149(1):247-54. PubMed ID: 6798021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of low molecular weight organic compounds by sulfate-reducing bacteria in a Delaware salt marsh.
    Dicker HJ; Smith DW
    Microb Ecol; 1985 Dec; 11(4):317-35. PubMed ID: 24221501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pH on Terminal Carbon Metabolism in Anoxic Sediments from a Mildly Acidic Lake.
    Phelps TJ; Zeikus JG
    Appl Environ Microbiol; 1984 Dec; 48(6):1088-95. PubMed ID: 16346672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl-compounds driven benthic carbon cycling in the sulfate-reducing sediments of South China Sea.
    Xu L; Zhuang GC; Montgomery A; Liang Q; Joye SB; Wang F
    Environ Microbiol; 2021 Feb; 23(2):641-651. PubMed ID: 32506654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ
    Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen 'leakage' during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments.
    Finke N; Hoehler TM; Jørgensen BB
    Environ Microbiol; 2007 Apr; 9(4):1060-71. PubMed ID: 17359276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh.
    Yuan J; Ding W; Liu D; Xiang J; Lin Y
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1817-29. PubMed ID: 23907256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.