These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16346333)

  • 1. Toxicity of smoke to epiphytic ice nucleation-active bacteria.
    Zagory D; Lindow SE; Parmeter JR
    Appl Environ Microbiol; 1983 Jul; 46(1):114-9. PubMed ID: 16346333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial ice nucleation: a factor in frost injury to plants.
    Lindow SE; Arny DC; Upper CD
    Plant Physiol; 1982 Oct; 70(4):1084-9. PubMed ID: 16662618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive Exclusion of Epiphytic Bacteria by IcePseudomonas syringae Mutants.
    Lindow SE
    Appl Environ Microbiol; 1987 Oct; 53(10):2520-7. PubMed ID: 16347468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and expression of bacterial ice nucleation genes in Escherichia coli.
    Orser C; Staskawicz BJ; Panopoulos NJ; Dahlbeck D; Lindow SE
    J Bacteriol; 1985 Oct; 164(1):359-66. PubMed ID: 3900043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between Ice Nucleation Frequency of Bacteria and Frost Injury.
    Lindow SE; Hirano SS; Barchet WR; Arny DC; Upper CD
    Plant Physiol; 1982 Oct; 70(4):1090-3. PubMed ID: 16662619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice nucleation temperature of individual leaves in relation to population sizes of ice nucleation active bacteria and frost injury.
    Hirano SS; Baker LS; Upper CD
    Plant Physiol; 1985 Feb; 77(2):259-65. PubMed ID: 16664039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of ice nucleation-active bacteria on plants in nature.
    Lindow SE; Arny DC; Upper CD
    Appl Environ Microbiol; 1978 Dec; 36(6):831-8. PubMed ID: 736541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae.
    Gurian-Sherman D; Lindow SE
    Cryobiology; 1995 Apr; 32(2):129-38. PubMed ID: 7743815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Release of cell-free ice nuclei by Erwinia herbicola.
    Phelps P; Giddings TH; Prochoda M; Fall R
    J Bacteriol; 1986 Aug; 167(2):496-502. PubMed ID: 3525514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylinositol, a phospholipid of ice-nucleating bacteria.
    Kozloff LM; Turner MA; Arellano F; Lute M
    J Bacteriol; 1991 Mar; 173(6):2053-60. PubMed ID: 1848220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunological characterization of ice nucleation proteins from Pseudomonas syringae, Pseudomonas fluorescens, and Erwinia herbicola.
    Deininger CA; Mueller GM; Wolber PK
    J Bacteriol; 1988 Feb; 170(2):669-75. PubMed ID: 3123461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.
    Suzuki S; Fukuda S; Fukushi Y; Arakawa K
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2090-2097. PubMed ID: 28942726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial ice nucleation: significance and molecular basis.
    Gurian-Sherman D; Lindow SE
    FASEB J; 1993 Nov; 7(14):1338-43. PubMed ID: 8224607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola.
    Kozloff LM; Schofield MA; Lute M
    J Bacteriol; 1983 Jan; 153(1):222-31. PubMed ID: 6848483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level expression of ice nuclei in Erwinia herbicola is induced by phosphate starvation and low temperature.
    Fall AL; Fall R
    Curr Microbiol; 1998 Jun; 36(6):370-6. PubMed ID: 9608750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of Ice Nucleation-Active and Genetically Engineered Non-Ice-Nucleating Pseudomonas syringae Strains after Freezing.
    Buttner MP; Amy PS
    Appl Environ Microbiol; 1989 Jul; 55(7):1690-4. PubMed ID: 16347963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size of bacterial ice-nucleation sites measured in situ by radiation inactivation analysis.
    Govindarajan AG; Lindow SE
    Proc Natl Acad Sci U S A; 1988 Mar; 85(5):1334-8. PubMed ID: 16593912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three separate classes of bacterial ice nucleation structures.
    Turner MA; Arellano F; Kozloff LM
    J Bacteriol; 1990 May; 172(5):2521-6. PubMed ID: 2158972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically engineered microorganisms to rescue plants from frost injury.
    Dar GH; Anand RC; Sharma PK
    Adv Biochem Eng Biotechnol; 1993; 50():1-19. PubMed ID: 8213308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles and biotechnological applications of bacterial ice nucleation.
    Margaritis A; Bassi AS
    Crit Rev Biotechnol; 1991; 11(3):277-95. PubMed ID: 1760850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.